分析 (1)直线l过定点,说明定点的坐标与参数k无关,故让k的系数为0 可得定点坐标.
(2)求出A、B的坐标,代入三角形的面积公式化简,再使用基本不等式求出面积的最小值,注意等号成立条件要检验,求出面积最小时的k值,从而得到直线方程.
解答 解:(1)证明:由已知得k(x+2)+(1-y)=0,
∴无论k取何值,直线过定点(-2,1).
(2)令y=0得A点坐标为(-2-$\frac{1}{k}$,0),
令x=0得B点坐标为(0,2k+1)(k>0),
∴S△AOB=$\frac{1}{2}$|-2-$\frac{1}{k}$||2k+1|
=$\frac{1}{2}$(2+$\frac{1}{k}$)(2k+1)=(4k+$\frac{1}{k}$+4)
≥$\frac{1}{2}$(4+4)=4.
当且仅当4k=$\frac{1}{k}$,即k=$\frac{1}{2}$时取等号.
即△AOB的面积的最小值为4,此时直线l的方程为$\frac{1}{2}$x-y+1+1=0.即x-2y+4=0.
点评 本题考查过定点的直线系方程特征,以及利用基本不等式求表达式的最小值.考查转化思想以及计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a>b,则$\frac{1}{a}$>$\frac{1}{b}$ | B. | 若a>b,则$\frac{1}{a}$<$\frac{1}{b}$ | C. | 若|a|>b,则a2>b2 | D. | 若a>|b|,则a2>b2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com