精英家教网 > 高中数学 > 题目详情
10.已知a<-1,函数f(x)=$\sqrt{({x}^{3}-1)^{2}}$+x3+ax(x∈R),求函数f(x)的最小值.

分析 当x≤1时,f(x)=1+ax,从而判断出为减函数;当x>1,化简f(x)=2x3+ax-1,从而求导判断函数的单调性,从而求最小值.

解答 解:当x≤1时,
f(x)=$\sqrt{({x}^{3}-1)^{2}}$+x3+ax
=1-x3+x3+ax=1+ax,
故f(x)在(-∞,1]上是减函数;
当x>1,
故f(x)=$\sqrt{({x}^{3}-1)^{2}}$+x3+ax=x3-1+x3+ax=2x3+ax-1,
f′(x)=6x2+a=6(x+$\sqrt{\frac{-a}{6}}$)(x-$\sqrt{\frac{-a}{6}}$),
当-6≤a<-1时,$\sqrt{\frac{-a}{6}}$≤1;
故f(x)在(1,+∞)上是增函数;
故fmin(x)=f(1)=1+a;
当a<-6时,$\sqrt{\frac{-a}{6}}$>1,
故f(x)在(1,$\sqrt{\frac{-a}{6}}$]上是减函数,在($\sqrt{\frac{-a}{6}}$,+∞)上是增函数;
故fmin(x)=f($\sqrt{\frac{-a}{6}}$)=$\frac{2}{3}$a$\sqrt{\frac{-a}{6}}$+1.

点评 本题考查了分类讨论的思想与转化思想的应用,同时考查了导数的综合应用及函数的性质应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.与圆x2+y2+2x-8y-24=0的圆心相同,并且经过点(-1,2)的圆的方程是(  )
A.(x+1)2+(y-4)2=4B.(x+1)2+(y+4)2=4C.(x+1)2+(y-4)2=16D.(x+1)2+(y+4)2=16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线l:kx-y+1+2k=0(k∈R).
(1)证明:直线l过定点;
(2若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S的最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知an=logn+1(n+2)(n∈N*),观察下列算式:a1•a2=log23•log34=$\frac{lg3}{lg2}$$•\frac{lg4}{lg3}$=2;a1•a2•a3•a4•a5•a6=log23•log34•…•log78=$\frac{lg3}{lg2}$$•\frac{lg4}{lg3}$•…•$\frac{lg8}{lg7}$=3,…;若a1•a2•a3•…•am=2016(m∈N*),则m的值为(  )
A.22016+2B.22016C.22016-2D.22016-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}的前n项和为Sn,S3=15,a3和a5的等差中项为9
(1)求an及Sn
(2)令bn=$\frac{4}{{{a}_{n}}^{2}-1}$(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=x3+ax2+bx+1,函数y=f(x+1)-1为奇函数,则函数f(x)的零点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设x3+ax+b=0,其中a,b均为实数.下列条件中,使得该三次方程仅有一个实根的是①③④.(写出所有正确条件的编号)
①a=b=-3;②a=-3,b=2;③a=-3,b>2;④a=0,b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设Sn是数列{an}的前n项和,且2an+Sn=An2+Bn+C.
(1)当A=B=0,C=1时,求an
(2)若数列{an}为等差数列,且A=1,C=-2.
①设bn=2n•an,求数列{bn}的前n项和;
②设cn=$\frac{{{T_n}-6}}{4^n}$,若不等式cn≥$\frac{m}{8}$对任意n∈N*恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若集合M={x∈R|x2-4x<0},集合N={0,4},则M∪N=(  )
A.[0,4]B.[0,4)C.(0,4]D.(0,4)

查看答案和解析>>

同步练习册答案