精英家教网 > 高中数学 > 题目详情
7.从抛物线y2=4x图象上一点P引抛物线准线的垂线,垂足为M,且|PM|=5,设抛物线焦点为F,则△PFM的面积为10.

分析 设P(x0,y0),通过|PM|=x0+$\frac{p}{2}$,求出P的坐标,然后求解三角形的面积.

解答 解:抛物线y2=4x中p=2,设P(x0,y0),则|PM|=x0+$\frac{p}{2}$,即5=x0+1,得x0=4,所以y0=±4,所以${S}_{△PFM}=\frac{1}{2}|PM||{y}_{0}|$=10.
故答案为:10.

点评 本题考查抛物线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.某四面体的三视图如图所示,则该四面体的外接球表面积为(  )
A.29πB.64πC.41πD.48π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱体,左右两端均为半球形,按照设计要求中间圆柱体部分的容积为16π立方米,且L≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为1千元,半球形部分每平方米建造费用为$\frac{c}{2}(c>0)$千元.设该容器的建造费用为y千元.(圆柱体体积公式为V=πr2l,球的体积公式为$V=\frac{4}{3}π{r^3}$,圆柱侧面积公式为S=2πrl,球的表面积公式为S=4πr2
(1)写出y关于r的函数表达式,并求该函数的定义域;
(2)求该容器的建造费用最小时的r.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.从0,1,2,3,4,5这六个数字中取两个偶数和两个奇数组成没有重复数字的四位数.试问:
(1)能组成多少个不同的四位数?
(2)四位数中,两个偶数排在一起的有几个?(所有结果均用数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|x2+x-6<0},B={y|y=2x-1,x≤2},则A∩B=(  )
A.(-3,3]B.(-1,3)C.(-3,2]D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足a1=2,an+1=2an-1
(1)求证数列{an-1}是等比数列
 (2)设bn=n•(an-1),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=2cosx($\sqrt{3}$sinx+cosx)-1
(1)求函数f(x)的单调递减区间;
(2)若y=f(x+φ)关于直线x=$\frac{π}{3}$对称,求|φ|的最小值;
(3)当x∈[0,$\frac{π}{2}$]时,若方程|f(x)|-m=0有4个不同的实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设点A(-1,2),B(2,3),C(3,-1),且$\overrightarrow{AD}=2\overrightarrow{AB}-3\overrightarrow{BC}$则点D的坐标为(  )
A..(2,16)B..(-2,-16)C..(4,16)D.(2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在直三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,AB1与A1B相交于点D,E是CC1上的点,且DE∥平面ABC,BC=1,BB1=2.
(Ⅰ)证明:B1E⊥平面ABE
(Ⅱ)若异面直线AB和A1C1所成角的正切值为$\frac{\sqrt{2}}{2}$,求二面角A-B1E-A1的余弦值.

查看答案和解析>>

同步练习册答案