精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,都是边长为2的等边三角形,设在底面的射影为.

(1)求证:中点;

(2)证明:

(3)求二面角的余弦值.

【答案】(1)详见解析;(2)详见解析;(3).

【解析】试题分析:(1)根据等边三角形有,依题意有平面,故,由此可知中点.(2)由平面可得,而,即,故平面,故.(3)以分别为轴建立空间直角坐标系,利用法向量计算二面角的余弦值.

试题解析:(1)证明:∵都是等边三角形,

又∵底面

则点的外心,又因为是直角三角形,

∴点中点.

(2)证明:由(1)知,点在底面的射影为点,点中点,

于是

∵在中,

,∴

从而

.

(3)以点为原点,以所在射线为轴 ,轴,轴建系如图,

,则

设面的法向量为,则

,得

,得

.

设面的法向量为,则

,得

,则,故

于是

由图观察知为钝二面角,

所以该二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论的单调性;

(Ⅱ)对于任意,任意,总有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】社会公众人物的言行一定程度上影响着年轻人的人生观、价值观.某媒体机构为了解大学生对影视、歌星以及著名主持人方面的新闻(简称:“星闻”)的关注情况,随机调查了某大学的位大学生,得到信息如下表:

(Ⅰ)从所抽取的人内关注“星闻”的大学生中,再抽取三人做进一步调查,求这三人性别不全相同的概率;

(Ⅱ)是否有以上的把握认为“关注‘星闻’与性别有关”,并说明理由;

(Ⅲ)把以上的频率视为概率,若从该大学随机抽取位男大学生,设这人中关注“星闻”的人数为,求的分布列及数学期望.

附: .

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面给出四种说法:

①用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好;

②命题P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;

③设随机变量X服从正态分布N(0,1),若P(x>1)=p则P(﹣1<X<0)= ﹣p

④回归直线一定过样本点的中心( ).

其中正确的说法有( )

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修:坐标系与参数方程

已知曲线C的极坐标方程为ρ﹣4cosθ+3ρsin2θ=0,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l过点M(1,0),倾斜角为

(Ⅰ)求曲线C的直角坐标方程与直线l的参数方程;

(Ⅱ)若曲线C经过伸缩变换 后得到曲线C′,且直线l与曲线C′交于A,B两点,求|MA|+|MB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2015高考天津,文20】已知函数

I)求的单调区间;

II)设曲线轴正半轴的交点为P,曲线在点P处的切线方程为,求证:对于任意的正实数,都有;

III)若方程有两个正实数根,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取500测量这些产品的一项质量指标值由测量结果得如下频率分布直方图:

(1)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中的数据用该组区间的中点值作代表)

(2)由直方图可以认为这种产品的质量指标值Z服从正态分布N(μσ2)其中μ近似为样本平均数σ2近似为样本方差s2.

()利用该正态分布P(187.8<Z<212.2)

()某用户从该企业购买了100件这种产品X表示这100件产品中质量指标值位于区间(187.8212.2)的产品件数.利用()的结果,求E(X).

附: 12.2.ZN(μσ2)P(μσ<Z<μσ)0.682 6P(μ2σ<Z<μ2σ)0.954 4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(Ⅰ)若曲线上点处的切线过点,求函数的单调减区间;

(Ⅱ)若函数上无零点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆ab>0的离心率,过点的直线与原点的距离为

1求椭圆的方程

2已知定点,若直线与椭圆交于CD两点是否存在k的值,使以CD为直径的圆过E点?请说明理由

查看答案和解析>>

同步练习册答案