精英家教网 > 高中数学 > 题目详情
把函数y=cos2x+3的图象沿向量
a
平移后得到函数y=sin(2x-
π
6
)的图象,则向量
a
是(  )
A、(
π
3
,-3
B、(
π
6
,3
C、(
π
12
,-3
D、(-
π
12
,3
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:先根据诱导公式进行化简,再由左加右减上加下减的原则可确定函数y=cos2x+3到y=sin(2x-
π
6
)的路线,进而确定向量
a
解答: 解:∵y=cos2x+3=3+sin(2x+
π
2

设将函数y=3+sin(2x+
π
2
)向右平移个φ单位,再向下平移3个单位可得到y=sin(2x-
π
6
)的图象,
∴有y=3+sin[2(x-φ)+
π
2
]=sin(2x-
π
6
)+3,可解得φ=
π
3

a
=(
π
3
,-3)
故选:A.
点评:本题主要考查三角函数的平移.三角函数的平移原则为左加右减上加下减,注意三角函数的化简.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABO三个顶点坐标为A(1,0),B(0,2),O(0,0),P(x,y)是坐标平面内一点,且满足
AP
OA
≤0,
BP
OB
≥0,则
OP
AB
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,且a=2
6
,sinA=
2
2
3
AB
AC
=-3
(Ⅰ)求b和c,
(Ⅱ)求sin(A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)满足f(0)=6,f(x+1)=f(x)+4x
(1)求f(x)的解析式;
(2)令g(x)=
1
2
f(|x|)+m(m∈R),若g(x)有4个零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
25
+
y2
9
=1的右焦点是双曲线
x2
a2
-
y2
9
=1的右顶点,则双曲线的渐近线为(  )
A、y=±
4
5
x
B、y=±
3
5
x
C、y=±
3
4
x
D、y=±
4
3
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1与抛物线y2=2px(p>0)有公共焦点F(c,0)(c∈N*),M是它们的一个交点,S△MOF=2
6
,且|MF|=5.
(1)求椭圆及抛物线的方程;
(2)是否存在过F的直线l被椭圆及抛物线截得的弦长相等,若存在,求出l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知几何体的三视图(单位:cm).
(1)在这个几何体的直观图相应的位置标出字母A,B,C,D,A1,B1,C1,D1,P,Q;
(2)求这个几何体的表面积及体积;
(3)设异面直线A1Q、PD所成角为θ,求cosθ.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是正方形,已知AB=2,PA=2,PD=2
2
,∠PAB=60°
(1)求证:平面PAD⊥平面PAB;
(2)求异面直线PC与AD所成角的大小;
(3)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

α是第三象限角,且满足
1-sinα
1+sinα
+
1
cosα
=2
,则
sinα-cosα
sinα+3cosα
=
 

查看答案和解析>>

同步练习册答案