精英家教网 > 高中数学 > 题目详情
在△ABC中,内角A、B、C的对边分别是a、b、c,cosAcosB-sinAsinB=
1
2
,a=3,c=7,求b的长.
考点:余弦定理,正弦定理
专题:解三角形
分析:已知等式左边利用两角和与差的余弦函数公式化简求出A+B的余弦值,进而确定出C的余弦值,结合a=3,c=7和余弦定理,可得b的长.
解答: 解:∵cosAcosB-sinAsinB=cos(A+B)=-cosC=
1
2

∴cosC=-
1
2

又∵a=3,c=7,
∴c2=a2+b2-2abcosC=a2+b2+ab,
即b2+3b-40=0,
解得:b=5
点评:此题考查了余弦定理,以及两角和与差的余弦函数公式,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,AA1=2,AB=AC=1,∠BAC=90°,点M是BC的中点,点N在侧棱CC1上,NM⊥AB1
(1)求证:平面AB1M⊥平面AMN;
(2)求异面直线B1N与AB所成的角的正切值;
(3)求二面角A-B1N-M的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(x,y)是椭圆
x2
9
+
y2
4
=1上的动点,用线性规划求2x+3y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,∠α的终边落在y=-
3
4
x所确定的函数图象上,求sinα、cosα和tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
1-3x
1+3x
,x∈(a,1)是非奇非偶函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

11层大楼,3个人进一部电梯,每层都停,三个人从不同的楼层下的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={-2},B={x|ax+1=0,a∈R},若A∩B=B,则a的取值集合为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在其定义域内既是奇函数又是减函数的是(  )
A、y=
1
x
B、f(x)=
(
1
2
)x,x<0
0,x=0
-2x,x>0
C、y=
ex-e-x
2
D、y=lg|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点集P={(x,y)|1≤x≤4,1≤y≤3,x,y∈Z},从P中选出四个不同的点组成平行四边形,求:
(1)其中一组对边与x轴平行的平行四边形有多少个?
(2)所有平行四边形有多少个?

查看答案和解析>>

同步练习册答案