精英家教网 > 高中数学 > 题目详情
9.在平面直角坐标系xOy中已知圆C:x2+(y-1)2=5,A为圆C与x轴负半轴的交点,过点A作圆C的弦AB,记线段AB的中点为M.若OA=OM,则直线AB的斜率为2.

分析 因为圆的半径为$\sqrt{5}$,所以A(-2,0),连接CM,显然CM⊥AB,求出圆的直径,在三角形OCM中,利用正弦定理求出sin∠OCM,利用∠OCM与∠OAM互补,即可得出结论.

解答 解:因为圆的半径为$\sqrt{5}$,所以A(-2,0),连接CM,显然CM⊥AB,
因此,四点C,M,A,O共圆,且AC就是该圆的直径,2R=AC=$\sqrt{5}$,
在三角形OCM中,利用正弦定理得2R=$\frac{OM}{sin∠OCM}$,
根据题意,OA=OM=2,
所以,$\sqrt{5}$=$\frac{2}{sin∠OCM}$,
所以sin∠OCM=$\frac{2}{\sqrt{5}}$,tan∠OCM=-2(∠OCM为钝角),
而∠OCM与∠OAM互补,
所以tan∠OAM=2,即直线AB的斜率为2.
故答案为:2.

点评 本题考查直线与圆的位置关系,考查正弦定理,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.函数f(x)=x3+ax2+x+2(x∈R)
(Ⅰ)若f(x)在x∈(-∞,+∞)上是增函数,求实数a的取值范围.
(Ⅱ)a=0时,曲线f(x)=x3+x+2的切线斜率的取值范围记为集合A,曲线f(x)=x3+x+2上同两点p(x1,y1),Q(x2,y2)连线斜率取值范围记为集合B,你认为集合A、B之间有怎样的关系,(真子集、相等),并证明你的结论.
(Ⅲ)a=3时,f(x)=x3+3x2+x+2的导函数f′(x)是二次函数,f′(x)的图象关于轴对称.你认为三次函数f(x)=x3+3x2+x+2的图象是否具有某种对称性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ln(1+ax)-$\frac{2x}{x+2}$(a>0)
(1)当a=$\frac{1}{2}$时,求f(x)的极值;
(2)若a∈($\frac{1}{2}$,1),f(x)存在两个极值点x1,x2,试比较f(x1)+f(x2)与f(0)的大小
(3)求证e${\;}^{\frac{n(n-1)}{2}}$>n!(n≥2,n∈N)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知点A(1,2),直线l:x=-1,两个动圆均过A且与l相切,其圆心分别为C1,C2,若满足2$\overrightarrow{{C}_{2}M}$=$\overrightarrow{{C}_{2}{C}_{1}}$+$\overrightarrow{{C}_{2}A}$,则M的轨迹方程为(y-1)2=2x-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求导:f(x)=lnx-$\frac{x-a}{\sqrt{ax}}$-lna.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.顾客请一位工艺师把A,B两件玉石原料各制成一件工艺品.工艺师带一位徒弟完成这项任务.每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客.两件原料每道工序所需时间(单位:工作日)如下:
工序时间原料粗加工精加工
原料A915
原料B621
则最短交货期为(  )个工作日.
A.36B.42C.45D.51

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若a>b>0,则$\root{3}{a}$-$\root{3}{b}$与$\root{3}{a-b}$中较大的数为$\root{3}{a-b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.根据下列条件,求圆的方程:
(1)经过P(-2,4),Q(3,-1)两点,并且在x轴上截得的弦长等于6;
(2)圆心在直线y=-4x上,且与直线l:x+y-1=0相切于点P(3,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,圆x2+y2=1上一定点A(0,1),一动点M从A点开始逆时针绕圆运动一周,并记由射线OA按逆时针方向绕O点旋转到射线OM所形成的∠AOM为x,直线AM与X轴交于点N(t,0),则函数t=f(x)的图象大致为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案