精英家教网 > 高中数学 > 题目详情
17.已知点A(1,2),直线l:x=-1,两个动圆均过A且与l相切,其圆心分别为C1,C2,若满足2$\overrightarrow{{C}_{2}M}$=$\overrightarrow{{C}_{2}{C}_{1}}$+$\overrightarrow{{C}_{2}A}$,则M的轨迹方程为(y-1)2=2x-$\frac{1}{2}$.

分析 由抛物线的定义可得动圆的圆心轨迹方程为y2=4x+2,利用2$\overrightarrow{{C}_{2}M}$=$\overrightarrow{{C}_{2}{C}_{1}}$+$\overrightarrow{{C}_{2}A}$,确定坐标之间的关系,即可求出M的轨迹方程.

解答 解:由抛物线的定义可得动圆的圆心轨迹方程为y2=4x+2,
设C1(a,b),C2(m,n),M(x,y),则
∵2$\overrightarrow{{C}_{2}M}$=$\overrightarrow{{C}_{2}{C}_{1}}$+$\overrightarrow{{C}_{2}A}$,
∴2(x-m,y-n)=(a-m,b-n)+(1-m,2-n),
∴2x=a+1,2y=b+2,
∴a=2x-1,b=2y-2,
∵b2=4a+2,
∴(2y-2)2=4(2x-1)+2,即(y-1)2=2x-$\frac{1}{2}$.
故答案为:(y-1)2=2x-$\frac{1}{2}$.

点评 本题考查轨迹方程,考查向量知识的运用,考查学生分析解决问题的能力,确定坐标之间的关系是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在正方体ABCD-A′B′C′D′中,棱AB、BB′、B′C′、C′D′的中点分别是E,F,G,H,如图所示,则下列说法中正确的有(  )
①点A,D′,H,F共面;
②直线EG与直线HF是异面直线;
③A′C⊥平面EFG;
④D′G∥平面A′DF.
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设D、E分别是△ABC的边AB,BC上的点,AD=$\frac{1}{3}AB$,BE=$\frac{2}{3}$BC,若$\overrightarrow{DE}$=λ1$\overrightarrow{AB}$+λ2$\overrightarrow{AC}$(λ1,λ2为实数)则λ12的值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)在[-1,t]上的最小值为N(t),最大值为M(t),若存在最小正整数k,使得M(t)-N(t)≤k(t+1)对任意t∈(-1,b]成立,则称函数f(x)为区间(-1,b]上的“k阶δ函数”.若函数f(x)=x2为区间(-1,4]上的“k阶δ函数”,则k的值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$为非零向量,已知命题p:若|$\overrightarrow{a}$|=2sin$\frac{π}{24}$,|$\overrightarrow{b}$|=4cos$\frac{π}{24}$,$\overrightarrow{a}$•$\overrightarrow{b}$=1,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{12}$;命题q:若函数f(x)=(x$\overrightarrow{a}$+$\overrightarrow{b}$)($\overrightarrow{a}$-x$\overrightarrow{b}$)的图象关于y轴对称,则$\overrightarrow{a}$•$\overrightarrow{b}$=0.则下列命题正确的是(  )
A.(¬p)∧(¬q)B.(¬p)∨qC.p∨qD.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2ex+$\frac{1}{x}$,
(1)求f′(x);
(2)求${∫}_{1}^{2}$f(x)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在平面直角坐标系xOy中已知圆C:x2+(y-1)2=5,A为圆C与x轴负半轴的交点,过点A作圆C的弦AB,记线段AB的中点为M.若OA=OM,则直线AB的斜率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知公差不为0的等差数列{an}中,a1+a2+a3+a4=20,a1,a2,a4成等比数列,求集合A={x|x=an,n∈N*且100<x<200}的元素个数及所有这些元素的和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若x>0,y>0,x+4y=40,则lgx+lgy的最大值为2.

查看答案和解析>>

同步练习册答案