精英家教网 > 高中数学 > 题目详情

【题目】某校选择高一年级三个班进行为期二年的教学改革试验,为此需要为这三个班各购买某种设备1台.经市场调研,该种设备有甲乙两型产品,甲型价格是3000元/台,乙型价格是2000元/台,这两型产品使用寿命都至少是一年,甲型产品使用寿命低于2年的概率是,乙型产品使用寿命低于2年的概率是.若某班设备在试验期内使用寿命到期,则需要再购买乙型产品更换.

(1)若该校购买甲型2台,乙型1台,求试验期内购买该种设备总费用恰好是10000元的概率;

(2)该校有购买该种设备的两种方案, 方案:购买甲型3台; 方案:购买甲型2台乙型1台.若根据2年试验期内购买该设备总费用的期望值决定选择哪种方案,你认为该校应该选择哪种方案?

【答案】(1)(2)选择B方案

【解析】试题分析】(1)由于总费用为10000元,说明试验期内恰好有1台设备使用寿命到期,因此可运用独立事件的概率公式可求得(2)可将问题转化为两类进行求解:(1)若选择方案,记试验期内更换该种设备台数为,总费用为元,则,所以,又,所以;(2)若选择B方案,记试验期内更换该种设备台数为,总费用元,则 ,所以,又,所以

因为,所以选择B方案.

解:(1)总费用为10000元,说明试验期内恰好有1台设备使用寿命到期,概率为:

(2)若选择方案,记试验期内更换该种设备台数为,总费用为元,则

,所以,又,所以

若选择B方案,记试验期内更换该种设备台数为,总费用元,则

所以

,所以

因为,所以选择B方案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】集合A={x|3≤x<9},B={x|1<x<7},C={x|x>m}.
(1)求A∪B;
(2)求(RA)∩B;
(3)若BC,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有5名男司机,4名女司机,需选派5人运货到吴忠.

(1)如果派3名男司机、2名女司机,共有多少种不同的选派方法?

(2)至少有两名男司机,共有多少种不同的选派方法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电子公司开发一种智能手机的配件,每个配件的成本是15元,销售价是20元,月平均销售件,通过改进工艺,每个配件的成本不变,质量和技术含金量提高,市场分析的结果表明,如果每个配件的销售价提高的百分率为,那么月平均销售量减少的百分率为,记改进工艺后电子公司销售该配件的月平均利润是(元).

(1)写出的函数关系式;

(2)改进工艺后,试确定该智能手机配件的售价,使电子公司销售该配件的月平均利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线与轴平行.

(Ⅰ)求的值;

(Ⅱ)若,求函数的最小值;

(Ⅲ)求证:存在,当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线平行于轴.

(1)求的单调区间;

(2)证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若函数为定义域上的单调函数,求实数的取值范围;

(Ⅱ)若函数存在两个极值点 ,且,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ)函数f(x)满足对任意的实数x,y都有f(xy)=f(x)+f(y),且f(4)=2,求f( )的值; (Ⅱ)已知函数f(x)是定义在[﹣1,1]上的奇函数,且f(x)在[﹣1,1]上递增,求不等式f(x+ )+f(x﹣1)<0
的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A中含有三个元素3,x,x2﹣2x.
(1)求实数x应满足的条件;
(2)若﹣2∈A,求实数x.

查看答案和解析>>

同步练习册答案