| A. | -4 | B. | -2 | C. | 2 | D. | 4 |
分析 由抛物线方程求出焦点坐标,设出E的坐标(-1,m),利用EF和QP垂直求得m的值,可得G的坐标,求出QG所在直线方程,与抛物线C:y2=4x联立,求出P的坐标,即可求出P点的纵坐标.
解答
解:如图,由抛物线方程为y2=4x,得F(1,0),设E(-1,m)(m>0),
则EF中点为G(0,$\frac{m}{2}$),kEF=$\frac{m}{2}$,
又Q(-1,$\frac{3}{2}$),
∴kQG=$\frac{m-3}{2}$,则-$\frac{m}{2}$•$\frac{m-3}{2}$=-1,解得:m=4.
∴G(0,2),
∴QG所在直线方程为y-$\frac{3}{2}$=$\frac{1}{2}$(x+1),即x-2y+4=0.
联立$\left\{\begin{array}{l}{x-2y+4=0}\\{{y}^{2}=4x}\end{array}\right.$,得$\left\{\begin{array}{l}{x=4}\\{y=4}\end{array}\right.$,即P(4,4),
故选:D.
点评 本题考查了抛物线的简单性质,考查了抛物线的应用,平面解析式的基础知识.考查了考生的基础知识的综合运用和知识迁移的能力,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 7 | B. | 6 | C. | 5 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 既不充分也不必要条件 | D. | 充要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a+3 | B. | 6 | C. | 2 | D. | 3-a |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com