精英家教网 > 高中数学 > 题目详情
8.已知tanα=2,则$\frac{sinα+cosα}{2sinα+cosα}$=$\frac{3}{5}$.

分析 利用同角三角函数的基本关系,求得要求式子的值.

解答 解:∵tanα=2,则$\frac{sinα+cosα}{2sinα+cosα}$=$\frac{tanα+1}{2tanα+1}$=$\frac{3}{5}$,
故答案为:$\frac{3}{5}$.

点评 本题主要考查同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.过点P(4,-3)作抛物线y=$\frac{1}{4}$x2的两切线,切点分别为A,B,则直线AB的方程为(  )
A.2x-y+3=0B.2x+y+3=0C.2x-y-3=0D.2x+y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.做一个容积为32m3的底面为正方形的无盖长方体水箱,它的高为2m时最省料.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.随机变量X~B(n,p),其均值等于200,标准差等于10,则n,p的值分别为(  )
A.400,$\frac{1}{2}$B.200,$\frac{1}{20}$C.400,$\frac{1}{4}$D.200,$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x3-ax+b,x∈R,若函数f(x)在点(1,f(1))处的切线方程是2x-y+3=0,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若sin2α=$\frac{2}{3}$,则sin2(α-$\frac{π}{4}$)=(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}中,a1=2,前n项和为Sn,且点P(an,an+1)(n∈N*)在一次函数上y=x+2的图象上,则$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$=(  )
A.$\frac{n(n+1)}{2}$B.$\frac{2n}{n+1}$C.$\frac{2}{n(n+1)}$D.$\frac{n}{n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.同时抛掷2枚质地均匀的硬币4次,设2枚硬币正好出现1枚正面向上、1枚反面向上的次数为X,则X的数学期望是(  )
A.1B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若sinx=-$\frac{1}{3}$,x∈(-$\frac{π}{2}$,0),则x=-arcsin$\frac{1}{3}$.(结果用反三角函数表示)

查看答案和解析>>

同步练习册答案