精英家教网 > 高中数学 > 题目详情
20.F为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的右焦点,点P在双曲线右支上,△POF(O为坐标原点)满足OF=OP=5,$P{F_{\;}}=2\sqrt{5}$,则双曲线的离心率为 (  )
A.$\sqrt{3}+1$B.$\sqrt{5}$C.2D.$\sqrt{3}$

分析 运用余弦定理可得cos∠OFP,求得sin∠OFP,求得P的坐标,代入双曲线方程,结合a,b,c的关系,求得a,再由离心率公式,计算即可得到.

解答 解:由余弦定理可得cos∠OFP=$\frac{{5}^{2}+{5}^{2}-(2\sqrt{5})^{2}}{2×5×5}$=$\frac{3}{5}$,
则sin∠OFP=$\sqrt{1-co{s}^{2}∠OFP}$=$\frac{4}{5}$,
可设P为第一象限的点,
即有P(3,4),
代入双曲线方程,可得$\frac{9}{{a}^{2}}-\frac{16}{{b}^{2}}=1$,
又a2+b2=25,
解得a=$\sqrt{5}$,b=2$\sqrt{5}$,
则离心率为e=$\sqrt{5}$.
故选:B.

点评 本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,同时考查余弦定理和任意角的三角函数的定义,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知双曲线 $C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点为F,双曲线C与过原点的直线相交于A、B两点,连接AF,BF.若|AF|=6,|BF|=8,$cos∠BAF=\frac{3}{5}$,则该双曲线的离心率为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.双曲线x2-2y2=1的渐近线方程为y=±$\frac{\sqrt{2}}{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四棱锥P-ABCD中,底面ABCD是菱形,PD⊥平面ABCD,点D1为棱PD的中点,过D1作与平面ABCD平行的平面与棱PA,PB,PC相交于A1,B1,C1,∠BAD=60°.
(1)证明:B1为PB的中点;
(2)已知棱锥的高为3,且AB=2,AC、BD的交点为O,连接B1O.求三棱锥B1-ABO外接球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.双曲线x2-$\frac{{y}^{2}}{3}$=1的焦点坐标为(-2,0),(2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设f是从集合A={1,2}到集合B={0,1,2,3,4}的映射,则满足f(1)+f(2)=4的所有映射的个数为5个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.对于函数f(x),g(x),记集合Df>g={x|f(x)>g(x)}.
(1)设f(x)=2|x|,g(x)=x+3,求Df>g
(2)设f1(x)=x-1,${f_2}(x)={(\frac{1}{3})^x}+a•{3^x}+1$,h(x)=0,如果${D_{{f_1}>h}}∪{D_{{f_2}>h}}=R$.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知三棱锥S-ABC的所有顶点都在球O的球面上,球O的表面积为16π,△ABC是边长为3的正三角形,若SC⊥AB,SA⊥BC,则三棱锥S-ABC的体积的最大值为(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{3\sqrt{3}}{4}$C.$\frac{9\sqrt{3}}{4}$D.$\frac{27\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线C:$\frac{x^2}{16}-\frac{y^2}{b^2}=1({b>0})$的右焦点与抛物线y2=20x的焦点重合,则双曲线C的渐近线方程为(  )
A.4x±3y=0B.3x±4y=0C.16x±9y=0D.9x±16y=0

查看答案和解析>>

同步练习册答案