分析 (1)由面面平行的性质可得BD∥B1D1,故$\frac{P{B}_{1}}{PB}=\frac{P{D}_{1}}{PD}=\frac{1}{2}$,于是B1为PB的中点;
(2)由OA,OB,OB1两两垂直可知三棱锥B1-ABO外接球是以OA、OB、OB1为长、宽、高的长方体的外接球.于是长方体的对角线长为球的直径.
解答
解:(1)连结B1D1
∵平面ABCD∥平面A1B1C1D1,平面PBD∩平面ABCD=BD,平面PBD∩平面A1B1C1D1=B1D1,
∴BD∥B1D1,
∴$\frac{P{B}_{1}}{PB}=\frac{P{D}_{1}}{PD}=\frac{1}{2}$,
∴B1为PB中点.
(2)∵四边形ABCD是菱形,∠BAD=60°,
∴△ABD是等边三角形,OA⊥OB.
∴OB=$\frac{1}{2}BD=\frac{1}{2}AB$=1,OA=$\sqrt{3}OB$=$\sqrt{3}$,
∵B1,O是PB,BD的中点,
∴OB1∥PD,OB1=$\frac{1}{2}PD$=$\frac{3}{2}$.
∵PD⊥平面ABCD,
∴OB1⊥平面ABCD,∵OA?平面ABCD,OB?平面ABCD,
∴OA⊥OB1,OB⊥OB1,
∴三棱锥B1-ABO外接球是以OA、OB、OB1为长、宽、高的长方体外接球,
∴三棱锥B1-ABO外接球的半径R=$\frac{1}{2}$$\sqrt{O{A}^{2}+O{B}^{2}+O{{B}_{1}}^{2}}$=$\frac{1}{2}\sqrt{3+1+\frac{9}{4}}$=$\frac{5}{4}$.
则三棱锥B1-ABO外接球的体积为$V=\frac{4}{3}π{R^3}=\frac{4}{3}π{(\frac{5}{4})^3}=\frac{125π}{48}$.
点评 本小题主要考查立体几何的相关知识,具体涉及到面面的平行关系在立体几何中的应用.本小题对考生的空间想象能力与运算求解能力有较高要求.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x2-$\frac{3{y}^{2}}{2}$=1 | B. | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1 | C. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{6}$=1 | D. | $\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{2}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | “f(0)=0”是“函数f(x)是奇函数”的充要条件 | |
| B. | “若$α=\frac{π}{6}$,则$sinα=\frac{1}{2}$”的否命题是“若$α≠\frac{π}{6}$,则$sinα≠\frac{1}{2}$ | |
| C. | 若$p:?{x_0}∈R,x_0^2-{x_0}-1>0$,则¬p:?x∈R,x2-x-1<0 | |
| D. | 若p∧q为假命题,则p,q均为假命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}+1$ | B. | $\sqrt{5}$ | C. | 2 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (7+4$\sqrt{3}$,+∞) | B. | (7-4$\sqrt{3}$,+∞) | C. | (7-4$\sqrt{3}$,7+4$\sqrt{3}$) | D. | (0,7-4$\sqrt{3}$)∪(7+4$\sqrt{3}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com