精英家教网 > 高中数学 > 题目详情
19.给出下列两个集合A,B及A→B的对应f:
①A={-1,0,1},B={-1,0,1},f:A中的数的平方;
②A={0,1},B={-1,0,1},f:A中的数的开方;
③A=Z,B=Q,f:A中的数的倒数;
④A=R,B={正实数},f:A中的数取绝对值;
⑤A={1,2,3,4},B={2,4,6,8,10},f:n=2m,其中n∈A,m∈B;
其中是A到B的函数有2个.

分析 根据函数的定义分别进行判断即可.

解答 解:①A={-1,0,1},B={-1,0,1},f:A中的数的平方;满足函数的定义,正确
②A={0,1},B={-1,0,1},f:A中的数的开方;不是函数关系,∵(±1)2=1,∴1有2个对应元素,不满足唯一性,不是函数关系.
③A=Z,B=Q,f:A中的数的倒数;不是函数关系,∵0的倒数不存在,∴0没有对应元素,不是函数关系.
④A=R,B={正实数},f:A中的数取绝对值;不是函数关系,∵0的绝对值是0,∴0没有对应元素,不是函数关系.
⑤A={1,2,3,4},B={2,4,6,8,10},f:n=2m,其中n∈A,m∈B;满足函数关系,
故答案为:2

点评 本题主要考查函数定义的判断,根据函数的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.过双曲线C:$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}$=1的右焦点F作一直线(不平行于坐标轴)交双曲线于A、B两点,若点M是AB的中点,O为坐标原点,则kAB•kOM的值为(  )
A.$\frac{5}{4}$B.-$\frac{5}{4}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知双曲线 $C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点为F,双曲线C与过原点的直线相交于A、B两点,连接AF,BF.若|AF|=6,|BF|=8,$cos∠BAF=\frac{3}{5}$,则该双曲线的离心率为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一个实轴端点与恰与抛物线y2=-4x的焦点重合,且双曲线的离心率等于2,则该双曲线的方程为(  )
A.$\frac{x^2}{4}-\frac{y^2}{12}=1$B.$\frac{x^2}{12}-\frac{y^2}{4}=1$C.$\frac{x^2}{3}-\frac{y^2}{1}=1$D.${x^2}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.经过双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$的左顶点、虚轴上端点、右焦点的圆的方程是x2+y2-2x+$\frac{1}{4}$y-15=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\frac{\sqrt{13}}{3}$,右焦点F,F在渐近线上的垂足为M,O为坐标原点,若$\overrightarrow{OF}$•$\overrightarrow{MF}$=4,则双曲线C的方程是$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{4}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.双曲线x2-2y2=1的渐近线方程为y=±$\frac{\sqrt{2}}{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四棱锥P-ABCD中,底面ABCD是菱形,PD⊥平面ABCD,点D1为棱PD的中点,过D1作与平面ABCD平行的平面与棱PA,PB,PC相交于A1,B1,C1,∠BAD=60°.
(1)证明:B1为PB的中点;
(2)已知棱锥的高为3,且AB=2,AC、BD的交点为O,连接B1O.求三棱锥B1-ABO外接球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知三棱锥S-ABC的所有顶点都在球O的球面上,球O的表面积为16π,△ABC是边长为3的正三角形,若SC⊥AB,SA⊥BC,则三棱锥S-ABC的体积的最大值为(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{3\sqrt{3}}{4}$C.$\frac{9\sqrt{3}}{4}$D.$\frac{27\sqrt{3}}{4}$

查看答案和解析>>

同步练习册答案