精英家教网 > 高中数学 > 题目详情
16.已知双曲线C:$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{b}$=1(b>0)的离心率为2,则C上任意一点到两条渐近线的距离之积为(  )
A.$\sqrt{2}$B.$\frac{3}{2}$C.2D.3

分析 利用点到直线的距离公式,结合双曲线方程,即可得出结论.

解答 解:∵双曲线的离心率是2,
∴e2=$\frac{{c}^{2}}{{a}^{2}}$=$\frac{2+b}{2}$=4,得b=6,
则双曲线方程为$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{6}$=1,渐近线方程为y=±$\frac{\sqrt{3}}{3}$x,即x±$\sqrt{3}$y=0,
则C上任意一点P(x,y)到两条渐近线的距离之积为d1d2=$\frac{|x+\sqrt{3}y|}{2}×\frac{|x-\sqrt{3}y|}{2}$=$\frac{|{x}^{2}-3{y}^{2}|}{4}$=$\frac{6}{4}$=$\frac{3}{2}$,
故选:B

点评 本题主要考查双曲线的性质和方程,利用求出双曲线的渐近线,结合点到直线的距离公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.在等差数列{an}中,Sn=5n2+3n,求an=10n-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一个实轴端点与恰与抛物线y2=-4x的焦点重合,且双曲线的离心率等于2,则该双曲线的方程为(  )
A.$\frac{x^2}{4}-\frac{y^2}{12}=1$B.$\frac{x^2}{12}-\frac{y^2}{4}=1$C.$\frac{x^2}{3}-\frac{y^2}{1}=1$D.${x^2}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\frac{\sqrt{13}}{3}$,右焦点F,F在渐近线上的垂足为M,O为坐标原点,若$\overrightarrow{OF}$•$\overrightarrow{MF}$=4,则双曲线C的方程是$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{4}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.双曲线x2-2y2=1的渐近线方程为y=±$\frac{\sqrt{2}}{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线y=x-2过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的焦点,则此双曲线C的渐近线方程为(  )
A.y=±$\frac{\sqrt{3}}{3}$xB.y=$±\sqrt{3}$xC.y=±$\frac{1}{3}$xD.y=±$\frac{\sqrt{5}}{5}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四棱锥P-ABCD中,底面ABCD是菱形,PD⊥平面ABCD,点D1为棱PD的中点,过D1作与平面ABCD平行的平面与棱PA,PB,PC相交于A1,B1,C1,∠BAD=60°.
(1)证明:B1为PB的中点;
(2)已知棱锥的高为3,且AB=2,AC、BD的交点为O,连接B1O.求三棱锥B1-ABO外接球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设f是从集合A={1,2}到集合B={0,1,2,3,4}的映射,则满足f(1)+f(2)=4的所有映射的个数为5个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.双曲线$\frac{{x}^{2}}{3}$-y2=1的焦点F到其渐近线的距离为(  )
A.$\frac{\sqrt{3}}{2}$B.1C.$\sqrt{3}$D.2

查看答案和解析>>

同步练习册答案