精英家教网 > 高中数学 > 题目详情
设各项均为正数的数列{an}的前n项和为Sn,对于任意的正整数n都有等式
S1
a1+2
+
S2
a2+2
+…+
Sn
an+2
=
1
4
Sn
成立.
(1)求证Sn
1
4
a2n
+
1
2
an
(n∈N+);
(2)求数列{Sn}的通项公式;
(3)记数列{
1
Sn
}
的前n项和为Tn,求证Tn<1.
(1)当n=1时,a1=2.
当n≥2时,
an=sn-sn-1=4•
Sn
an+2

Sn=
1
4
an2+
1
2
an

当n=1时,也符合Sn=
1
4
an2+
1
2
an

Sn=
1
4
an2+
1
2
an(n∈N*)

(2)当n≥2时,
an=Sn-Sn-1=
1
4
an2+
1
2
an-
1
4
an-12-
1
2
an-1

∴(an+an-1)(an-an-1-2)=0
∵an>0,
∴an-an-1=2
于是数列{an}是首项为2,
公差为2的等差数列.∴Sn=n×2+
n(n-1)
2
×2=n(n+1)

(3)由(2)知
1
Sn
=
1
n(n+1)
=
1
n
-
1
n+1

Tn=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn

=1-
1
n+1
<1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设各项均为正数的数列{an}和{bn}满足5an5bn5an+1成等比数列,lgbn,lgan+1,lgbn+1成等差数列,且a1=1,b1=2,a2=3,求通项an、bn

查看答案和解析>>

科目:高中数学 来源: 题型:

设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列{
Sn
}
是公差为d的等差数列.
(1)求数列{an}的通项公式(用n,d表示);
(2)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式Sm+Sn>cSk都成立.求证:c的最大值为
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列{
Sn
}
是公差为d的等差数列.
(Ⅰ)求数列{an}的通项公式(用n,d表示);
(Ⅱ)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式Sm+Sn>cSk都成立.求c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广东)设各项均为正数的数列{an}的前n项和为Sn,满足4Sn=
a
2
n+1
-4n-1,n∈N*
,且a2,a5,a14构成等比数列.
(1)证明:a2=
4a1+5

(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有
1
a1a2
+
1
a2a3
+…+
1
anan+1
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设各项均为正数的数列{an}的前n项和为Sn,对于任意的正整数n都有等式Sn=
1
4
a
2
n
+
1
2
an
(n∈N*)成立.
(1)求数列{an}的通项公式;
(2)令数列bn=|c|
an
2n
Tn
为数列{bn}的前n项和,若Tn>8对n∈N*恒成立,求c的取值范围.

查看答案和解析>>

同步练习册答案