精英家教网 > 高中数学 > 题目详情
为弘扬“乐于助人,与人为善”中华传统美德,某社区组织了一个40人的社区志愿者服务团队,他们在一个月内参加社区公益活动的次数统计如表所示:
活动次数123
参加人数51520
(1)从该服务团队中任意选3名志愿者,求这3名志愿者中至少有两名志愿者参加活动次数签好相等的概率;
(2)从该服务团队中任选两名志愿者,用X表示这两人参加活动次数只差的绝对值,求随机变量X的分布列及数学期望E(X).
考点:离散型随机变量的期望与方差
专题:计算题,概率与统计
分析:(1)利用对立事件的概率公式,可得这3名志愿者中至少有两名志愿者参加活动次数签好相等的概率;
(2)由题意知X的可能取值是0,1,2,由题设条件分别求出P(X=0),P(X=1)和P(X=2)的值,由此能求出X的分布列及数学期望E(X).
解答: 解:(1)利用对立事件的概率公式,可得这3名志愿者中至少有两名志愿者参加活动次数签好相等的概率为
1-
C
1
5
C
1
15
C
1
20
C
3
40
=
419
494

(2)X的可能取值为0,1,2,则
P(X=0)=
C
2
5
+C
2
15
+
C
2
20
C
2
40
=
61
156
,P(X=1)=
C
1
5
C
1
15
+
C
1
15
C
1
20
C
2
40
=
75
156
,P(X=2)=
C
1
5
C
1
20
C
2
40
=
5
39

X的分布列为
X 0
 P
61
156
75
156
5
39
∴EX=0×
61
156
+1×
75
156
+2×
5
39
=
115
156
点评:本题考查离散型随机变量的分布列和数学期望,考查概率的求法和应用,是历年高考的必考题型.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果袋中有6个红球,4个白球,从中任取1球,记住颜色后放回,连续摸取4次,设ξ为取得红球的次数,则Eξ为(  )
A、
12
5
B、
3
4
C、
19
7
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图所示的程序框图,若输入的k=6,则输出的值S是(  )
A、63B、64
C、127D、128

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos
x
2
,-sin
x
2
),
b
=(cos
3x
2
,sin
3x
2
),f(x)=
a
b
+t|
a
+
b
|,x∈[0,
π
2
].
(Ⅰ)若f(
π
3
)=-
9
2
,求函数f(x)的值域;
(Ⅱ)若关于x的方程f(x)+2=0有两个不同的实数解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aex+
1
2
x2+bx,曲线y=f(x)在点(0,f(0))处的切线为y-1=0.
(1)求f(x)的解析式及单调区间;
(2)若m为整数,且当x>ln2时,(x-m)(f′(x)-x-1)+2x+1>0,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-3≤x≤1},B={x|a-1≤x≤2a+3},若A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-1|+|x+1|,不等式f(x)≥4的解集为M.
(Ⅰ)求M;
(Ⅱ)当a,b∈M时,证明:|
a
2
+
2
b
|≥|
a
b
+1|.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F,将△ABD沿BD折起,使平面ABD⊥平面BCD,如图2所示.
(1)求证:AE⊥平面BCD;
(2)求二面角A-DC-B的余弦值;
(3)已知点M在线段AF上,且EM∥平面ADC,求
AM
AF
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(lgx)2-2alg(10x)+a2(1≤x≤10)的最小值为g(a),求g(a)的解析式.

查看答案和解析>>

同步练习册答案