精英家教网 > 高中数学 > 题目详情
4.计算:${(-2)^{-3}}+{(\frac{1}{4})^0}-{9^{-\frac{1}{2}}}$=$\frac{13}{24}$.

分析 直接利用有理指数幂的运算法则化简求解即可.

解答 解:${(-2)^{-3}}+{(\frac{1}{4})^0}-{9^{-\frac{1}{2}}}$=$-\frac{1}{8}$+1-$\frac{1}{3}$=$\frac{13}{24}$.
故答案为:$\frac{13}{24}$.

点评 本题考查有理指数幂的运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.复数(3-4i)i(其中i为虚数单位)在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.2010年上海世博会某国要建一座八边形的展馆区,它的主体造型的平面图是由两个相同的矩形ABCD和EFGH构成的面积为200m2的十字型地域,计划在正方形MNPQ上建一座“观景花坛”,造价为4200元/m2,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元/m2,再在四个空角(如△DQH等)上铺草坪,造价为80元/m2.设AD长为xm,DQ长为ym.
(1)试找出x与y满足的等量关系式;
(2)设总造价为S元,试建立S与x的函数关系;
(3)若总造价S不超过138000元,求AD长x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=xlnx.
(I)记函数g(x)=$\frac{a{x}^{2}}{2}$,若?x0∈[1,e]使f(x0)<g(x0)成立,求实数a的取值范围;
(Ⅱ)记函数h(x)=(k-3)x-k+2,若x>1时f(x)>h(x)恒成立,求整数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和为Sn,且满足:①an>0,②a1=2,③对任意n∈N+有$a_{n+1}^2-{a_n}{a_{n+1}}-2a_n^2=0$
(1)求an及Sn
(2)已知数列{bn}的前n项和为Tn,若${b_n}+{b_{n+1}}=({sin^2}\frac{nπ}{2}-{cos^2}\frac{nπ}{2})•{log_2}{a_n}$;求T2016的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求值:
(1)${0.027^{-\frac{1}{3}}}-{(-\frac{1}{7})^{-2}}+{256^{\frac{3}{4}}}-{3^{-1}}$+1
(2)log43•log92+log2$\root{4}{64}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.定义在非零实数集上的函数f(x)满足:f(xy)=f(x)+f(y),且f(x)在区间(0,+∞)上为递增函数.
(1)求f(1)、f(-1)的值;
(2)求证:f(x)是偶函数;
(3)解不等式$f(2)+f(x-\frac{1}{2})≤0$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)的定义域和值域均为(0,+∞),且满足f(5x)=5f(x),f(x)=2-|x-3|,1≤x≤5
则f(665)=40.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{1}{2}$ax2+2x-ln(x+1).
(1)当a=1时,求函数在点(1,f(1))处的切线方程;
(2)当x∈[0,+∞)时,若函数y=f(x)的图象都在$\left\{\begin{array}{l}{x≥0}\\{y-x≤0}\end{array}\right.$所表示的平面区域内,求实数a的取值范围.

查看答案和解析>>

同步练习册答案