精英家教网 > 高中数学 > 题目详情
16.定义在非零实数集上的函数f(x)满足:f(xy)=f(x)+f(y),且f(x)在区间(0,+∞)上为递增函数.
(1)求f(1)、f(-1)的值;
(2)求证:f(x)是偶函数;
(3)解不等式$f(2)+f(x-\frac{1}{2})≤0$.

分析 (1)利用赋值法即可求f(1)、f(-1)的值;
(2)根据函数奇偶性的定义即可证明f(x)是偶函数;
(3)根据函数奇偶性,利用数形结合即可解不等式$f(2)+f(x-\frac{1}{2})≤0$.

解答 解:(1)令x=y=1,则f(1)=f(1)+f(1),
∴f(1)=0…(2分)
令x=y=-1,则f(1)=f(-1)+f(-1),
∴f(-1)=0…(4分)
(2)令y=-1,则f(-x)=f(x)+f(-1)=f(x),…(6分)
∴f(-x)=f(x)…(7分)
∴f(x)是偶函数  …(8分)
(3)根据题意可知,函数y=f(x)的图象大致如右图:
∵$f(2)+f(x-\frac{1}{2})=f(2x-1)≤0$,…(9分)
∴-1≤2x-1<0或0<2x-1≤1,…(11分)
∴$0≤x<\frac{1}{2}$或$\frac{1}{2}<x≤1$…(12分)

点评 本题主要考查抽象函数的应用以及函数奇偶性的判断,利用赋值法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设不等式组$\left\{\begin{array}{l}{x-y+4≤0}\\{x+y-2≤0}\\{y-2≥0}\\{\;}\end{array}\right.$示的平面区域为D.若指数函数y=ax(a>0且a≠1)的图象经过区域D上的点,则a的取值范围是(  )
A.[$\sqrt{2}$,3]B.[3,+∞)C.(0,$\frac{1}{3}$]D.[$\frac{1}{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.f(x)=x2+(m-1)x+1在(0,2)与(2,4)各有1个零点,则m的取值范围是$(-\frac{13}{4},-\frac{3}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.计算:${(-2)^{-3}}+{(\frac{1}{4})^0}-{9^{-\frac{1}{2}}}$=$\frac{13}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2+kx+3-k.
(1)当x∈R且k=3时,求函数的最值及单调区间;
(2)若函数f(x)在[1,+∞)为增函数,求k的取值范围;
(3)当x∈[-2,2]时,求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)是定义域为R的单调增函数,且f(x)是奇函数,当x>0时,f(x)=log2(1+x)
(1)求f(x)的解析式;
(2)解关于t的不等式f(t2-2t)+f(2t2-5)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线x-y+2=0和圆C:x2+y2-8x+12=0,过直线上的一点P(x0,y0)作两条直线PA,PB与圆C相切于A,B两点.①当P点坐标为(2,4)时,求以PC为直径的圆的方程,并求直线AB的方程;
②设切线PA与PB的斜率分别为k1,k2,且k1•k2=-7时,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)={log_a}\frac{1-x}{1+x}$(a>0且a≠1)
(1)若$f(-\frac{1}{3})=1$,集合A={x|f(x)=-2},B={1},写出集合A∪B的所有子集;
(2)若$f(-\frac{11}{13})=m$,$f(-\frac{7}{11})=n$,试用m,n来表示$f(-\frac{5}{7})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.由数字1,2,3,4,5组成无重复数字的五位数.
(1)共可以组成多少个五位数?
(2)其中奇数有多少个?
(3)如果将所有的五位数按从小到大的顺序排列,43125是第几个数?说明理由.

查看答案和解析>>

同步练习册答案