精英家教网 > 高中数学 > 题目详情
3.已知函数$f(x)={log_a}\frac{1-x}{1+x}$(a>0且a≠1)
(1)若$f(-\frac{1}{3})=1$,集合A={x|f(x)=-2},B={1},写出集合A∪B的所有子集;
(2)若$f(-\frac{11}{13})=m$,$f(-\frac{7}{11})=n$,试用m,n来表示$f(-\frac{5}{7})$.

分析 (1)分别根据题中条件求出集合A,集合B,再求出A∪B及其全体子集;
(2)根据条件,先求出,${log_a}3=\frac{m+2n}{5}$,${log_a}2=\frac{2m-n}{5}$,再用m,n表示示$f(-\frac{5}{7})$.

解答 解:(1)由$f(-\frac{1}{3})=1$得,loga2=1,解得a=2,
再由${log_2}\frac{1-x}{1+x}=-2={log_2}\frac{1}{4}$得,$\frac{1-x}{1+x}=\frac{1}{4}$,解得,$x=\frac{3}{5}$,
因此,$A=\left\{{\frac{3}{5}}\right\}$,$A∪B=\left\{{\frac{3}{5},1}\right\}$,
∴A∪B的所有子集为:ϕ,$\left\{{\frac{3}{5}}\right\},\left\{1\right\}$,$\left\{{\frac{3}{5},1}\right\}$;
(2)由$f(-\frac{11}{13})=m$得,loga12=m,
即loga3+2loga2=m,-----------①
再由$f(-\frac{7}{11})=n$得,${log_a}\frac{9}{2}=n$
即2loga3-loga2=n,-----------②
联立①②解得,${log_a}3=\frac{m+2n}{5}$,${log_a}2=\frac{2m-n}{5}$,
所以,$f(-\frac{5}{7})={log_a}6={log_a}3+{log_a}2$=$\frac{3m+n}{5}$.

点评 本题主要考查了对数的图象与性质,对数的运算性质,以及子集的概念和集合的运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.2010年上海世博会某国要建一座八边形的展馆区,它的主体造型的平面图是由两个相同的矩形ABCD和EFGH构成的面积为200m2的十字型地域,计划在正方形MNPQ上建一座“观景花坛”,造价为4200元/m2,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元/m2,再在四个空角(如△DQH等)上铺草坪,造价为80元/m2.设AD长为xm,DQ长为ym.
(1)试找出x与y满足的等量关系式;
(2)设总造价为S元,试建立S与x的函数关系;
(3)若总造价S不超过138000元,求AD长x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.定义在非零实数集上的函数f(x)满足:f(xy)=f(x)+f(y),且f(x)在区间(0,+∞)上为递增函数.
(1)求f(1)、f(-1)的值;
(2)求证:f(x)是偶函数;
(3)解不等式$f(2)+f(x-\frac{1}{2})≤0$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)的定义域和值域均为(0,+∞),且满足f(5x)=5f(x),f(x)=2-|x-3|,1≤x≤5
则f(665)=40.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.2007年10月27日全国人大通过了关于修改个所得税的决定,工薪所得减去费用标准从800元提高到1600元,也就是说原来月收入超过800元部分就要纳税,2008年1月1日开始超过1600元才纳税,若税法修改前后超过部分的税率相同,如表:
级数全月应纳税所得额税率(%)
1不超过500元5
2500~2000元10
32000~5000元15
某人2007年6月交纳个人所得税123元,则按照新税法只要交43元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达3.32亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为0.4.
网购金额
(单位:元)
频数频率
(0,500]50.05
(500,1000]xp
(1000,1500]150.15
(1500,2000]250.25
(2000,2500]300.30
(2500,3000]yq
合计1001.00
(Ⅰ)确定x,y,p,q的值,并补全频率分布直方图;
(Ⅱ)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.
①请将列联表补充完整;
网龄3年以上网龄不足3年合计
购物金额在2000元以上35
购物金额在2000元以下20
合计100
②并据此列联表判断,能否在犯错误的概率不超过0.01的前提下,认为网购金额超过2000元与网龄在三年以上有关?
参考数据:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:${{K}^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在△ABC中,AB=c,BC=a,CA=b.其中a=14,BC边上的高为12,内切圆半径r=4.求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{1}{2}$ax2+2x-ln(x+1).
(1)当a=1时,求函数在点(1,f(1))处的切线方程;
(2)当x∈[0,+∞)时,若函数y=f(x)的图象都在$\left\{\begin{array}{l}{x≥0}\\{y-x≤0}\end{array}\right.$所表示的平面区域内,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知曲线C:$\frac{{x}^{2}}{9-k}$+$\frac{{y}^{2}}{4-k}$=1(k∈R).
(1)当曲线C为椭圆时,求k的取值范围;
(2)当曲线C为双曲线时,且一条渐近线的斜率为$\frac{1}{2}$时,求曲线C的方程.

查看答案和解析>>

同步练习册答案