精英家教网 > 高中数学 > 题目详情
6.在△ABC中,已知a+b=5,c=$\sqrt{7}$且4sin2$\frac{A+B}{2}$-cos2C=$\frac{7}{2}$.
(1)求角C;
(2)求S△ABC

分析 (1)由三角形的内角和定理及诱导公式化简已知的等式4sin2$\frac{A+B}{2}$-cos2C=$\frac{7}{2}$,再根据二倍角的余弦函数公式化简,合并整理后得到关于cosC的方程,求出方程的解得到cosC的值,由C为三角形的内角,利用特殊角的三角函数值即可求出C的度数;
(2)利用余弦定理表示出c2=a2+b2-2abcosC,再根据完全平方公式变形后,将a+b,c及cosC的值代入求出ab的值,然后再由ab,sinC的值,利用三角形的面积公式即可求出三角形ABC的面积.

解答 解:(1)∵A+B+C=180°,
∴$\frac{A+B}{2}$=90°-$\frac{C}{2}$,
由4sin2$\frac{A+B}{2}$-cos2C=$\frac{7}{2}$得:4cos2$\frac{C}{2}$-cos2C=$\frac{7}{2}$,
∴4•$\frac{1+cosC}{2}$-(2cos2C-1)=$\frac{7}{2}$,
整理得:4cos2C-4cosC+1=0,
解得:cosC=$\frac{1}{2}$,
∵0°<C<180°,
∴C=60°;
(2)由余弦定理得:c2=a2+b2-2abcosC,即7=a2+b2-ab,
∴7=(a+b)2-3ab=25-3ab?ab=6,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$×6×$\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{2}$.

点评 此题属于解三角形的题型,涉及的知识有:诱导公式,二倍角的余弦函数公式,余弦定理,三角形的面积公式,以及完全平方公式的运用,熟练掌握公式及定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.利用导数定义求函数y=$\sqrt{{x}^{2}+1}$在x=x0处的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知{an}的前n项和为Sn,且Sn+1=3Sn+2n+1,a1=1,
(1)求an
(2)若bn=n(an+1),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求f(x)=$\frac{2x+5}{|x|-x}$+(2x+3)0定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.等差数列{an}中,已知a1=$\frac{4}{5}$,a3+a6=3,an=11,则n等于(  )
A.52B.51C.50D.49

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,c=$\sqrt{2}$,acosC=csinA,若当a=x0时有两解,则x0取值范围为($\sqrt{2}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若实数f(x)=$\frac{\root{3}{x}}{{x}^{2}+2x+a}$的定义域为实数集R,则实数a的取值范围是(  )
A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.假如有1-10这十个数字,把他们分成五个一组,不重复,能分多少组?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)在R上是减函数,且f(|x|)>f(1),则x的取值范围是(-1,1).

查看答案和解析>>

同步练习册答案