精英家教网 > 高中数学 > 题目详情
2.利用导数定义求函数y=$\sqrt{{x}^{2}+1}$在x=x0处的导数.

分析 根据函数的导数公式进行求导即可.

解答 解:函数的导数f′(x)=$\frac{1}{2}•$(x2+1)${\;}^{-\frac{1}{2}}$•2x=$\frac{x}{\sqrt{{x}^{2}+1}}$,
则f′(x0)=$\frac{{x}_{0}}{\sqrt{{{x}_{0}}^{2}+1}}$.

点评 本题主要考查函数的导数的计算,要求熟练掌握掌握常见函数的导数公式,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.计算:
(1)5${\;}^{1-lo{g}_{0.2}3}$;
(2)log43•log92+log2$\root{4}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设α、β是方程x2-ax+b=0的两个实数根,试分析a>1且b>1是两根α、β均大于1的什么条件?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若两个等差数列{an}和{bn}的前n项和An和Bn满足关系式$\frac{{A}_{n}}{{B}_{n}}$=$\frac{7n+1}{4n+27}$(n∈N*),求$\frac{{a}_{n}}{{b}_{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等差数列前10项和为100,第6项为11,求此数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x)=x(1+cosx),则当x∈(-∞,0)时,f(x)=x(1+cosx).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,以O为圆心的圆与直线x-$\sqrt{3}$y=2相切.
(1)求圆O的方程;
(2)设M(-2,0),N(2,0),过N的动直线l交圆O于A,B两点,求△AMB面积最大时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②设有一个回归方程$\stackrel{∧}{y}$=3-5x,变量x增加一个单位时,y平均增加5个单位;
③线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$必过($\overline{x}$,$\overline{y}$);
④在2×2列联中,由计算得K2=5.824则有97.5%的把握确认这两个变量间有关系;
其中错误的个数是(  )

本题可以参考独立性检验临界值表:
P(K2≥k)0.50.400.250.150.100.050.250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.5357.87910.828
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,已知a+b=5,c=$\sqrt{7}$且4sin2$\frac{A+B}{2}$-cos2C=$\frac{7}{2}$.
(1)求角C;
(2)求S△ABC

查看答案和解析>>

同步练习册答案