精英家教网 > 高中数学 > 题目详情
12.定义在R上的函数f(x)满足f(x)>1-f′(x),若f(0)=6,则不等式f(x)>1+$\frac{5}{e^x}$(e为自然对数的底数)的解集为(  )
A.(0,+∞)B.(5,+∞)C.(-∞,0)∪(5,+∞)D.(-∞,0)

分析 构造函数g(x)=exf(x)-ex,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解

解答 解:设g(x)=exf(x)-ex,(x∈R),
则g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],
∵f'(x)>1-f(x),
∴f(x)+f′(x)-1>0,
∴g′(x)>0,
∴y=g(x)在定义域上单调递增,
∵f(x)>1+$\frac{5}{e^x}$,
∴exf(x)>ex+5,
∴g(x)>5,
又∵g(0)=e0f(0)-e0=6-1=5,
∴g(x)>g(0),
∴x>0,
∴不等式的解集为(0,+∞).
故选:A.

点评 本题考查函数的导数与单调性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.甲、乙同时向一敌机开炮,已知甲击中敌机的概率为0.7,乙击中的概率为0.6求:
(1)恰有一人击中敌机的概率;
(2)敌机被击中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=2x2+2kx-8在[-5,-1]上单调递减,则实数k的取值范围是(  )
A.(-∞,2]B.[2,+∞)C.(-∞,1]D.[1,+∞]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\left\{\begin{array}{l}{2,(x<1)}\\{{x}^{2}+ax,(x≥1)}\end{array}\right.$,若f(f(0))=4a,则实数a的值为(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在等比数列{an}中,若a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=$\frac{1}{2}$ .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,A为圆O外一点,AO与圆交于B,C两点,AB=4,AD为圆O的切线,D为切点,AD=8,∠BDC的角平分线与BC和圆O分别交于E,F两点.
(1)求证:$\frac{BD}{CD}$=$\frac{AD}{AC}$;
(2)求DE•DF的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为($\sqrt{2}$,$\frac{π}{4}$),直线l的极坐标方程为ρcos(θ-$\frac{π}{4}$)=a,且点A在直线l上.
(1)求a的值及直线l的直角坐标方程;
(2)已知曲线C的参数方程为$\left\{\begin{array}{l}x=4+5cost\\ y=3+5sint\end{array}\right.$,(t为参数),直线l与C交于M,N两点,求弦长|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.根据图象特征分析以下函数:
①f(x)=3-x              ②f(x)=x2-3x             ③f(x)=-$\frac{1}{x}$              ④f(x)=-|x|⑤y=ln(x+1)
其中在(0,+∞)上是增函数的是③⑤;(只填序号即可)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点M(3,0),两直线l1:2x-y-2=0与l2:x+y+3=0.
(1)过点M的直线l与l1,l2相交于P,Q两点,且线段PQ恰好被M所平分,求直线l的方程;
(2)求l1关于l2对称的直线l3的方程.

查看答案和解析>>

同步练习册答案