精英家教网 > 高中数学 > 题目详情
已知|
a
|=3,|
b
|=6,
a
b
的夹角为θ,
(1)若
a
b
,求
a
b

(2)若(
a
-
b
)⊥
a
,求θ.
考点:数量积表示两个向量的夹角,平面向量数量积的运算,数量积判断两个平面向量的垂直关系
专题:平面向量及应用
分析:(1)当
a
b
时,夹角为θ=0°或180°,由数量积的定义可得;(2)由垂直可得(
a
-
b
)•
a
=0,可得cosθ的方程,解方程可得cosθ,可得θ.
解答: 解:(1)|
a
|=3,|
b
|=6,
a
b
的夹角为θ
a
b
时,夹角为θ=0°或180°,
a
b
=|
a
||
b
|cosθ=±18;
(2)∵(
a
-
b
)⊥
a
,∴(
a
-
b
)•
a
=0,
a
2
-
a
b
=9-3×6×cosθ=0,
解得cosθ=
1
2
,∴θ=60°
点评:本题考查平面向量的夹角公式,涉及向量的平行和垂直,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知ABCD是边长为2的正方形,EA⊥平面ABCD,FC⊥平面ABCD,设EA=1,FC=2;
(1)证明:平面EAB⊥平面EAD;
(2)求四面体BDEF的体积;
(3)求点B到平面DEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

作为家长都希望自己的孩子能升上比较理想的高中,于是就催生了“名校热”,这样择校的结果就导致了学生在路上耽误的时间增加了.若某生由于种种原因,每天只能 6:15骑车从家出发到学校,途经5个路口,这5个路口将家到学校分成了6个路段,每个路段的骑车时间是10分钟(通过路口的时间忽略不计),假定他在每个路口遇见红灯的概率均为
1
3
,且该生只在遇到红灯或到达学校才停车.对每个路口遇见红灯情况统计如下:
红灯 1 2 3 4 5
等待时间(秒) 60 60 90 30 90
(1)设学校规定7:20后(含7:20)到校即为迟到,求这名学生迟到的概率;
(2)设X表示该学生上学途中遇到的红灯数,求P(X≥2)的值;
(3)设Y表示该学生第一次停车时已经通过路口数,求随机变量Y的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F与l切于B点,且△ABF的面积为2.
(Ⅰ)求p的值及圆F的方程;
(Ⅱ)过B作直线与抛物线C交于M(x1,y1),N(x2,y2)两点,是否存在常数m,使
|FM|
|FN|
=
y1-m
m-y2
恒成立?若存在,求常数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

从5双不同的鞋子中任取4只,
(1)取出的4只鞋子中至少能配成1双,有多少种不同的取法?
(2)取出的4只鞋子,任何两只都不能配成1双,有多少种不同的取法?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-2ax2+bx+c,
(1)当c=0时,f(x)在点P(1,3)处的切线平行于直线y=x+2,求a,b的值;
(2)若f(x)在点A(-1,8),B(3,-24)处有极值,求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的程序框图中,当输入实数x的值为4时,输出的结果为2;当输入实数x的值为-2时,输出的结果为4.
(l)求实数a,b的值,并写出函数f(x)的解析式;
(Ⅱ)若输出的结果为8,求输入的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若3+2i(i为虚数单位)是关于x的方程x2+px+q=0(p,q∈R)的一个根,则q的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

当x∈[-1,1]函数f(x)=3x+2的值域为
 

查看答案和解析>>

同步练习册答案