精英家教网 > 高中数学 > 题目详情
12.已知cosα=$\frac{1}{2}$,cos(α+β)=-$\frac{11}{14}$,且α∈(0,$\frac{π}{2}$),α+β∈($\frac{π}{2}$,π),求cosβ的值.

分析 由条件利用同角三角函数的基本关系、求得sinα 和sin(α+β)的值,再利用两角差的余弦公式求得 cosβ=cos[(α+β)-α]的值.

解答 解:根据cosα=$\frac{1}{2}$,cos(α+β)=-$\frac{11}{14}$,且α∈(0,$\frac{π}{2}$),α+β∈($\frac{π}{2}$,π),
可得sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{\sqrt{3}}{2}$,sin(α+β)=$\sqrt{{1-cos}^{2}(α+β)}$=$\frac{5\sqrt{3}}{14}$,
∴cosβ=cos[(α+β)-α]=cos(α+β)cosβ+sin(α+β)sinα=-$\frac{11}{14}$×$\frac{1}{2}$+$\frac{5\sqrt{3}}{14}$×$\frac{\sqrt{3}}{2}$=$\frac{1}{7}$.

点评 本题主要考查同角三角函数的基本关系、两角差的余弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知x,y满足$\left\{\begin{array}{l}{3{x}^{2}-{y}^{2}=8}\\{{x}^{2}+xy+{y}^{2}=4}\end{array}\right.$,则x-y=±4,或±$\frac{4\sqrt{13}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若不等式ax2+bx+3>0的解集为{x|-1<x<3},则a+b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知(x+1)•(2-x)≥0的解为条件p,关于x的不等式x2+mx-2m2-3m-1<0(m>-$\frac{2}{3}$的解为条件q,p是q的什么条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知A={x∈R|x<-2或x>3},B={x∈R|a≤x≤2a-1},若B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.当3a2+ab-2b2=0(a≠0,b≠0),求$\frac{a}{b}$-$\frac{b}{a}$-$\frac{{a}^{2}+{b}^{2}}{ab}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.计算:log${\;}_{\frac{1}{2}}$4+(-8)${\;}^{\frac{2}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知幂函数f(x)的图象过点(-$\frac{1}{2}$,-$\frac{1}{8}$),则log2f(4)的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在下列叙述中:
①设直线l过原点,且倾斜角为α,如果将l绕坐标原点按逆时针方向旋转60°,那么直线l的倾斜角为α+60°;
②若直线l斜率k=-1,则它的倾斜角为135°;
③若A(1,-3)、B(1,3),则直线AB的倾斜角为90°;
④若直线过点(1,2),且它的倾斜角为45°,则这条直线必经过(3,4)点;
⑤若直线斜率为$\frac{3}{4}$,则这条直线必经过(1,1)与(5,4)两点.
所有正确命题序号为②③④.

查看答案和解析>>

同步练习册答案