精英家教网 > 高中数学 > 题目详情
17.若点A$(\frac{π}{6},0)$、$B(\frac{π}{3},0)$是函数y=f(x)=sin(ωx+φ)的两个相邻零点,则$f(-\frac{π}{3})$=(  )
A.-1B.1C.0D.$\frac{1}{2}$

分析 根据题意求出函数的周期与ω的值,再由点($\frac{π}{3}$,0)在函数f(x)图象上求出sinφ的值,从而求出f(-$\frac{π}{3}$)的值.

解答 解:点A$(\frac{π}{6},0)$、$B(\frac{π}{3},0)$是函数y=f(x)=sin(ωx+φ)的两个相邻零点,
∴T=$\frac{2π}{ω}$=2($\frac{π}{3}$-$\frac{π}{6}$)=$\frac{π}{3}$,
∴ω=6;
又点($\frac{π}{3}$,0)在函数f(x)图象上,
∴sin(6×$\frac{π}{3}$+φ)=sinφ=0,
∴f(-$\frac{π}{3}$)=sin[6×(-$\frac{π}{3}$)+φ]=sinφ=0.
故选:C.

点评 本题考查了函数y=Asin(ωx+φ)的图象与性质的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$经过点$M(1,\frac{{2\sqrt{3}}}{3})$,离心率为$\frac{{\sqrt{3}}}{3}$.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若A1,A2是椭圆E的左右顶点,过点A2作直线l与x轴垂直,点P是椭圆E上的任意一点(不同于椭圆E的四个顶点),联结PA;交直线l与点B,点Q为线段A1B的中点,求证:直线PQ与椭圆E只有一个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.运行如图所示的程序框图,输出的n等于(  )
A.30零B.29C.28D.27

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.执行如图所示的程序框图,如果输出的结果为0,那么输入的x为(  )
A.$\frac{1}{9}$B.-1或1C.-lD.l

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某省2016年高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等级划分标准为:85分及以上,记为A等;分数在[70,85)内,记为B等;分数在[60,70)内,记为C等;60分以下,记为D等.同时认定A,B,C为合格,D为不合格.已知甲,乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出甲校的样本频率分布直方图如图1所示,乙校的样本中等级为C,D的所有数据的茎叶图如图2所示.
(I)求图中x的值,并根据样本数据比较甲乙两校的合格率;
(Ⅱ)在乙校的样本中,从成绩等级为C,D的学生中随机抽取两名学生进行调研,求抽出的两名学生中至少有一名学生成绩等级为D的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.集合A=$\left\{{(x,y)\left|{\left\{\begin{array}{l}x≤0\\ 2x-y+1≥0\\ x+2y+2≥0\end{array}\right.}\right.}\right.$,B={x,y)|x2+y2≤1},从集合B中任选一个元素,也是集合A的元素的概率是$\frac{4}{5π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=x3+(3-3a)x2-12ax+1(a∈R),若f(x)在区间(2,6)上不单调,则实数a的取值范围是(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=3sin(ωx-$\frac{π}{6}$)(ω>0)与g(x)=2cos(2x+φ)-1的图象有相同的对称轴,若$x∈[0,\frac{π}{2}]$,则f(x)的取值范围是(  )
A.$(-\frac{3}{2},3)$B.$[-\frac{3}{2},3]$C.$[-\frac{3}{2},\frac{3}{2}]$D.[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.执行如图所示的程序框图,则输出的n的值为(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案