精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=3sin(ωx-$\frac{π}{6}$)(ω>0)与g(x)=2cos(2x+φ)-1的图象有相同的对称轴,若$x∈[0,\frac{π}{2}]$,则f(x)的取值范围是(  )
A.$(-\frac{3}{2},3)$B.$[-\frac{3}{2},3]$C.$[-\frac{3}{2},\frac{3}{2}]$D.[-3,3]

分析 根据函数f(x)=3sin(ωx-$\frac{π}{6}$)(ω>0)与g(x)=2cos(2x+φ)-1的图象有相同的对称轴,其周期T相同,可得ω=2,$x∈[0,\frac{π}{2}]$,求出2x-$\frac{π}{6}$的范围,结合三角函数的图象及性质可知f(x)的取值范围.

解答 解:由题意,函数f(x)=3sin(ωx-$\frac{π}{6}$)(ω>0)与g(x)=2cos(2x+φ)-1的图象有相同的对称轴,其周期T相同,∴ω=2.
可得f(x)=3sin(2x-$\frac{π}{6}$),
当$x∈[0,\frac{π}{2}]$时,则2x-$\frac{π}{6}$∈[$-\frac{π}{6}$,$\frac{5π}{6}$],
当2x-$\frac{π}{6}$=$-\frac{π}{6}$时,函数f(x)取得最小值为$-\frac{1}{2}×3=-\frac{3}{2}$,
当2x-$\frac{π}{6}$=$\frac{π}{2}$时,函数f(x)取得最大值为1×3=3,
∴f(x)的取值范围是[$-\frac{3}{2}$,3];
故选:B

点评 本题主要考擦周期的问题和对称轴的关系.确定其解析式是哦关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,底面为平行四边形的四棱柱ABCD-A'B'C'D'中,DD'⊥平面ABCD,∠DAB=$\frac{π}{3}$,AB=2AD,DD'=3AD,E、F分别是线段AB、D'E的中点.
(Ⅰ)求证:CE⊥DF;
(Ⅱ)求二面角A-EF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若点A$(\frac{π}{6},0)$、$B(\frac{π}{3},0)$是函数y=f(x)=sin(ωx+φ)的两个相邻零点,则$f(-\frac{π}{3})$=(  )
A.-1B.1C.0D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(1og2x)=x-1,那么f(lg2)=2lg2-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若不等式3x2+y2≥mx(x+y)对于?x,y∈R恒成立,则实数m的取值范围是[-6,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.$f(x)=\sqrt{2}sin({x+φ})-a+{e^{-x}}$,$φ∈({0,\frac{π}{2}})$,已知f(x)的图象在(0,f(0))处的切线与x轴平行或重合.
(1)求φ的值;
(2)若对?x≥0,f(x)≤0恒成立,求a的取值范围;
(3)利用如表数据证明:$\sum_{k=1}^{157}{sin\frac{kπ}{314}<106}$.
${e^{\frac{π}{314}}}$${e^{-\frac{π}{314}}}$${e^{\frac{78π}{314}}}$${e^{-\frac{78π}{314}}}$${e^{\frac{79π}{314}}}$${e^{-\frac{79π}{314}}}$
1.0100.9902.1820.4582.2040.454

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=x2-2klnx(k>0).
(Ⅰ)当k=4时,求函数f(x)的单调区间和极值;
(Ⅱ)试讨论函数f(x)在区间(1,$\sqrt{e}$]上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设a=lg2,b=20.5,$c=cos\frac{3}{4}π$,则a,b,c按由小到大的顺序是c<a<b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设等差数列{an}的公差为d,且2a1=d,2an=a2n-1.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{{a}_{n}}{{2}^{n}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案