分析 利用余弦定理表示出cosA,将a,b及c的长代入求出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数.
解答 解:∵a=1,b=$\sqrt{2}$,c=1+$\sqrt{3}$,
∴由余弦定理可得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{2+(1+\sqrt{3})^{2}-1}{2×\sqrt{2}×(1+\sqrt{3})}$=$\frac{3\sqrt{6}+\sqrt{2}}{8}$.
∴解得A=arccos$\frac{3\sqrt{6}+\sqrt{2}}{8}$.
故答案为:arccos$\frac{3\sqrt{6}+\sqrt{2}}{8}$.
点评 此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 一定小于零 | B. | 可能等于零 | C. | 一定大于零 | D. | 正负均有可能 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 335 | B. | 336 | C. | 670 | D. | 671 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{2π}{3}$或$\frac{4π}{3}$ | D. | $\frac{3π}{3}$或$\frac{7π}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com