精英家教网 > 高中数学 > 题目详情
如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,离心率e=
5
5
,过F1的直线交椭圆于M、N两点,且△MNF2周长为4
5

(Ⅰ)求椭圆E的方程;
(Ⅱ)已知过椭圆中心,且斜率为k(k≠0)的直线与椭圆交于A、B两点,P是线段AB的垂直平分线与椭圆E的一个交点,若△APB的面积为
40
9
,求k的值.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)利用△MNF2周长为4
5
,求出a,利用离心率e=
5
5
,求出c,进而求出b,即可求椭圆E的方程;
(Ⅱ)线AB的方程为y=kx,线段AB的垂直平分线为y=-
1
k
x,分别与椭圆方程联立,求出P的坐标,|AB|,利用△APB的面积为
40
9
,建立方程,即可求k的值.
解答: 解:(Ⅰ)∵△MNF2周长为4
5

∴4a=4
5

∴a=
5

∵离心率e=
5
5

∴c=1,
b=
a2-c2
=2,
∴椭圆E的方程为
x2
5
+
y2
4
=1

(Ⅱ)直线AB的方程为y=kx,线段AB的垂直平分线为y=-
1
k
x,
y=-
1
k
x与椭圆方程联立,可得x=±
20k2
4k2+5

∴可得P(
20k2
4k2+5
,-
1
k
20k2
4k2+5
),
P到直线AB的距离为d=|
k2+1
k
20k2
4k2+5
|
y=kx与椭圆方程联立,可得x=±
20
4+5k2

∴|AB|=
1+k2
•2
20
4+5k2

∴S△ABP=
1
2
|AB|d|=
1
2
1+k2
•2
20
4+5k2
•|
k2+1
k
20k2
4k2+5
|
∵△APB的面积为
40
9

1
2
1+k2
•2
20
4+5k2
•|
k2+1
k
20k2
4k2+5
|=
40
9

∴k4-2k2+1=0,
∴k=±1.
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查三角形面积的计算,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(  )
A、y=log2|x|
B、y=cos2x
C、y=
2x-2-x
2
D、y=log2
2-x
2+x

查看答案和解析>>

科目:高中数学 来源: 题型:

对某电子元件进行寿命追踪调查,所得情况如频率分布直方图.

(1)图中纵坐标y0处刻度不清,根据图表所提供的数据还原y0
(2)根据图表的数据按分层抽样,抽取20个元件,寿命为100~300之间的应抽取几个;
(3)从(2)中抽出的寿命落在100~300之间的元件中任取2个元件,求事件“恰好有一个寿命为100~200,一个寿命为200~300”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率与等轴双曲线的离心率互为倒数,直线l:x-y+
2
=0与以原点为圆心,以椭圆C的短半轴长为半径的圆相切.
(1)求椭圆C的方程;
(2)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点(-1,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C的中心在原点,焦点在x轴上,离心率为
2
,且经过点(4,-
10
).
(Ⅰ)求双曲线C的方程;
(Ⅱ)设F1、F2为双曲线C的左、右焦点,若双曲线C上一点M满足F1M⊥F2M,求△MF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

若某产品的直径长与标准值的差的绝对值不超过1mm时,则视为合格品,否则视为不合格品.在近期一次产品抽样检查中,从某厂生产的此种产品中;随机抽取5000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差(单位mm),将所得数据分组,得到如下频率分布表:
分组频数频率
[-3,-2)50.10
[-2,-1)80.16
(1,2]250.50
(2,3]100.20
(3,4]20.04
合计501.00
(Ⅰ)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品,据此估算这批产品中的合格品的件数;
(Ⅱ)用分层抽样的方法从差的绝对值在[-2,-1)和(3,4]的产品中抽取5个,求其中差的绝对值在[-2,-1)中的产品的个数;
(Ⅲ)在(Ⅱ)中抽取的5个产品中任取2个,差的绝对值在[-2,-1)和(3,4]中各有1个的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=
x+4
-3
x-5
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如所示框图,若f(x)=3x2-1,取?=0.1,则输出的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题中,正确的是(  )
A、“若xy=0,则x=0且y=0”的逆否命题
B、“若ac2>bc2则a>b”的逆命题
C、若“m>2,则不等式x2-2x+m>0的解集为R”
D、“正方形是菱形”的否命题

查看答案和解析>>

同步练习册答案