分析 (I)由题意可设抛物线的标准方程为:y2=2px(p>0),把点P(1,2)代入解得p.可得抛物线C的标准方程及其准线方程.
(II)时直线l的方程为:y=x+b,代入抛物线方程可得:y2-4y+4b=0,设A(x1,y1),B(x2,y2).由题意可得:$\overrightarrow{PA}•\overrightarrow{PB}$=0,可得(x1-1)(x2-1)+(y1-2)(y2-2)=x1•x2-(x1+x2)+1+y1•y2-2(y1+y2+4=0,把根与系数的关系代入即可得出.
解答 解:(I)由题意可设抛物线的标准方程为:y2=2px(p>0),把点P(1,2)代入可得:22=2p×1,解得p=2.
∴抛物线C的标准方程为:y2=4x,准线方程为x=-1.
(II)时直线l的方程为:y=x+b,代入抛物线方程可得:y2-4y+4b=0,△=16-16b>0,解得b<1.
设A(x1,y1),B(x2,y2),∴y1+y2=4,y1•y2=4b,∴x1+x2=y1+y2-2b,x1x2=$\frac{{y}_{1}^{2}}{4}$$•\frac{{y}_{2}^{2}}{4}$=b2.
由题意可得:$\overrightarrow{PA}•\overrightarrow{PB}$=0,∴(x1-1)(x2-1)+(y1-2)(y2-2)=x1•x2-(x1+x2)+1+y1•y2-2(y1+y2+4=0,
∴b2-(4-2b)+1+4b-8+4=0,即b2+6b-7=0,解得b=-7,或b=1(舍去).
∴直线l的方程为:x-y-7=0.
点评 本题考查了抛物线的标准方程及其性质、直线与抛物线相交问题、圆的性质、一元二次方程的根与系数的关系、数量积运算性质,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{5}{2}$ | C. | $\frac{10}{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-3,-1) | B. | [-3,-1] | C. | [-1,1] | D. | (-1,1] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com