精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=|x-a|,其中a>1.
(Ⅰ)当a=2时,求不等式$\frac{f(x-2)-f(x+1)}{f(x-1)-f(x)}$<$\frac{f(x-1)+f(x)}{f(x-2)}$的解集;
(Ⅱ)若关于x的不等式|f(2x+a)-2f(x)|≤2的解集为{x|1≤x≤2},求a的值.

分析 (Ⅰ)当a=2时,函数f(x)=|x-2|,不等式$\frac{f(x-2)-f(x+1)}{f(x-1)-f(x)}$<$\frac{f(x-1)+f(x)}{f(x-2)}$可化为:$\frac{|x-4|-|x-1|}{|x-3|-|x-2|}<\frac{|x-3|+|x-2|}{|x-4|}$,利用零点分段法,可得不等式的解集;
(Ⅱ)若关于x的不等式|f(2x+a)-2f(x)|≤2的解集为{x|1≤x≤2},则1,2为方程|f(2x+a)-2f(x)|=2的两根,求出相应的a值后,检验可得答案.

解答 解:(Ⅰ)当a=2时,函数f(x)=|x-2|,
不等式$\frac{f(x-2)-f(x+1)}{f(x-1)-f(x)}$<$\frac{f(x-1)+f(x)}{f(x-2)}$可化为:$\frac{|x-4|-|x-1|}{|x-3|-|x-2|}<\frac{|x-3|+|x-2|}{|x-4|}$,
当x=$\frac{5}{2}$或x=4时,原不等式无意义,
(1)当x≤1时,不等式可化为:$\frac{-(x-4)+(x-1)}{-(x-3)+(x-2)}<\frac{-(x-3)-(x-2)}{-(x-4)}$,即$3<\frac{-2x+5}{-x+4}$,即-3x+12<-2x+5,解得:x>7,此时原不等式无解;
(2)当1<x≤2时,不等式可化为:$\frac{-(x-4)-(x-1)}{-(x-3)+(x-2)}<\frac{-(x-3)-(x-2)}{-(x-4)}$,即-2x+5$<\frac{-2x+5}{-x+4}$,即2x2-11x+15<0,解得:$\frac{5}{2}<x<3$,此时原不等式无解;
(3)当2<x<3且x≠$\frac{5}{2}$时,不等式可化为:$\frac{-(x-4)-(x-1)}{-(x-3)-(x-2)}<\frac{-(x-3)+(x-2)}{-(x-4)}$,即4-x<1,解得:x>3此时原不等式无解;
(4)当3≤x<4时,不等式可化为:$\frac{-(x-4)-(x-1)}{(x-3)-(x-2)}<\frac{(x-3)+(x-2)}{-(x-4)}$,即(2x-5)(x-3)>0,解得:x>3,或x<$\frac{5}{2}$,故3<x<4,
(5)当x>4时,不等式可化为:$\frac{(x-4)-(x-1)}{(x-3)-(x-2)}<\frac{(x-3)+(x-2)}{x-4}$,即3x-12<2x-5,解得:x<7,故4<x<7,
综上可得:不等式$\frac{f(x-2)-f(x+1)}{f(x-1)-f(x)}$<$\frac{f(x-1)+f(x)}{f(x-2)}$的解集为(3,4)∪(4,7);
(Ⅱ)若关于x的不等式|f(2x+a)-2f(x)|≤2的解集为{x|1≤x≤2},
则1,2为方程|f(2x+a)-2f(x)|=2的两根,
即1,2为方程||2x|-2|x-a||=2的两根,
即$\left\{\begin{array}{l}|2-2|1-a\left|\right|=2\\|4-2|2-a\left|\right|=2\end{array}\right.$
解得:a=1,a=-1,或a=3,
经检验当a=3时,不满足条件,
故a=±1

点评 本题考查的知识点是绝对值不等式的解法,零点分段法,分类讨论思想,不等式解集与相应方程根的关系,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.曲线f(x)=$\frac{x}{x+2}$在点(-1,-1)处的切线方程为(  )
A.2x+y+2=0B.2x+y+3=0C.2x-y-1=0D.2x-y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\frac{a}{2}$x2+blnx的图象在点(1,f(1))处的切线方程是2x-y-1=0,则ab等于(  )
A.2B.1C.0D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合M={x|x2-3x≤10},N={x|x2-(3a+2)x+2a2+3a+1<0}.若M∪N=M,则实数a的取值范围是[-$\frac{3}{2}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,A,B,C,O1,O2∈平面α,AB=BC=$\sqrt{3}$,∠ABC=90°,D为动点,DC=2,且DC丄BC,当点D从O1,顺时针转动到O2的过程中(D与O1、O2不重合),异面直线AD与BC所成角(  )
A.一直变小B.一直变大
C.先变小,后变大D.先变小,再变大,后变小

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义在R上的函数f(x)、g(x)满足f(x)=axg(x),且f′(x)g(x)<f(x)g′(x),且$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,若有穷数列{$\frac{f(n)}{g(n)}$}(n∈N*)的前n项和等于$\frac{31}{32}$,则n等于(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.任取实数x∈[2,30],执行如图所示的程序框图,则输出的x不小于79的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=ex-2x+a,若关于x的方程f(x)=0有两个不同正根,则实数a的取值范围是(-1,2ln2-2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$f(x)=2sin({x+\frac{π}{3}})({x∈R})$,函数y=f(x+φ)(|φ|≤$\frac{π}{2}$)的图象关于直线x=0对称,则φ的值为$\frac{π}{6}$.

查看答案和解析>>

同步练习册答案