| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
分析 函数f(x)、g(x)满足f(x)=axg(x),F(x)=$\frac{f(x)}{g(x)}$=ax.由于f′(x)g(x)<f(x)g′(x),可得F′(x)<0,于是函数F(x)在R上单调递减,0<a<1.利用$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,解得a.可得$\frac{f(n)}{g(n)}$=$(\frac{1}{2})^{n}$,利用等比数列的前n项和公式即可得出.
解答 解:∵函数f(x)、g(x)满足f(x)=axg(x),∴F(x)=$\frac{f(x)}{g(x)}$=ax,
∵f′(x)g(x)<f(x)g′(x),
∴F′(x)=$\frac{{f}^{′}(x)g(x)-f(x){g}^{′}(x)}{{g}^{2}(x)}$<0,
∴函数F(x)在R上单调递减,∴0<a<1.
∵$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,
∴a+a-1=$\frac{5}{2}$,
解得a=$\frac{1}{2}$.
∴$\frac{f(n)}{g(n)}$=$(\frac{1}{2})^{n}$,
∴有穷数列{$\frac{f(n)}{g(n)}$}(n∈N*)的前n项和=$\frac{\frac{1}{2}[1-(\frac{1}{2})^{n}]}{1-\frac{1}{2}}$=$\frac{31}{32}$,
解得n=5.
故选:C.
点评 本题考查了利用导数研究函数的单调性、等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | c<a<b | B. | a<b<c | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1-$\sqrt{2}$ | B. | -1+$\sqrt{2}$ | C. | 1+$\sqrt{2}$ | D. | 1-$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{7}{5}$ | C. | -$\frac{1}{5}$ | D. | -$\frac{7}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {a} | B. | {a,b,c,d } | C. | {b,c,d } | D. | {a,e } |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com