精英家教网 > 高中数学 > 题目详情
7.为了了解学生的数学复习情况,某校从第四次模拟考试成绩中抽取一个样本,将样本分成5组,绘成频率分布直方图,图中从左到右小矩形面积之比为2:5:10:5:3,最左边一组的频数为4,请结合直方图解决下列问题.
(Ⅰ)求中位数;
(Ⅱ)列出频率分布表;
(Ⅲ)从样本中成绩在[120,140)内的学生中任取2个学生,若成绩在[120,130)内奖给1个小红旗;若成绩在[130,140)内奖给2个小红旗.设X表示2个学生所得红旗总数,求X的分布列和E(X).

分析 (I)先分别求出从左至右各组的频率,由此能求出中位数.
(II)由最左边一组的频数为4,求出样本单元数n,从而求出从左至右各组频数,由此能求出频率分布表.
(III)由题意X的可能取值为2,3,4,分别求出相应的概率,由此能求出X的分布列和E(X).

解答 解:(I)由题意知从左至右各组的频率分别为$\frac{2}{25}$,$\frac{5}{25}$,$\frac{10}{25}$,$\frac{5}{25}$,$\frac{3}{25}$,即0.08,0.2,0.4,0.2,0.12,
∴中位数为:120+$\frac{0.5-0.2-0.08}{0.4}×10$=125.5.…(3分)
(II)∵最左边一组的频数为4,∴样本单元数n=$\frac{4}{0.08}$=50,
∴从左至右各组频数分别为:4,50×0.2,50×0.4,50×0.2,50×0.12,即4,10,20,10,6,
∴频率分布表为:

分   组频   数频    率
[100,110)40.08
[110,120)100.2
[120,130)200.4
[130,140)100.2
[140,150)60.12
合   计501
…(6分)
(III)由题意X的可能取值为2,3,4,
$P(X=2)=\frac{{C_{20}^2}}{{C_{30}^2}}=\frac{38}{87}$,
$P(X=3)=\frac{{C_{20}^1•C_{10}^1}}{{C_{30}^2}}=\frac{40}{87}$,
$P(X=4)=\frac{{C_{10}^2}}{{C_{30}^2}}=\frac{9}{87}$,
X的分布列为:
X234
p$\frac{38}{87}$$\frac{40}{87}$$\frac{9}{87}$
…(10分)
$EX=2×\frac{38}{87}+3×\frac{40}{87}+4×\frac{9}{87}=\frac{232}{87}$.…(12分)

点评 本题考查中位数的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组知识和频率分布直方图的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.给定两个命题:p:关于x的不等式ax2+x+1≤0的解集为∅;q:函数f(x)=ax3-x2+x+1在区间[1,+∞)上为减函数.如果p,q至少一个为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知椭圆$\frac{x^2}{a_1^2}+\frac{y^2}{b_1^2}=1({a_1}>{b_1}>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,双曲线$\frac{x^2}{a_2^2}-\frac{y^2}{b_2^2}=1({a_2}>0,{b_2}>0)$与椭圆有相同的焦点F1,F2,M是两曲线的一个公共点,若∠F1MF2=60°,则双曲线的离心率e为$\frac{2\sqrt{42}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.圆x2+y2+2x-6y+1=0关于直线ax-by+3=0(a>0,b>0)对称,则$\frac{1}{a}$+$\frac{3}{b}$的最小值是(  )
A.2$\sqrt{3}$B.6$\frac{2}{3}$C.4D.5$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知$sin(x-\frac{3π}{7})=\frac{4}{5}$,则$cos(\frac{13π}{14}-x)$=(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.过抛物线$x=\frac{1}{4}{y^2}$的焦点F的直线交抛物线于A,B两点,O是坐标原点,抛物线的准线与x轴交于点M,若|AF|=4,则△AMB的面积为(  )
A.$\frac{{5\sqrt{3}}}{3}$B.$\frac{{7\sqrt{3}}}{3}$C.$\frac{{8\sqrt{3}}}{3}$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,圆O和圆O′都经过点A和点B,PQ切圆O于点P,交圆O′于Q,M,交AB的延长线于N.若PN=2,MN=1,则MQ等于(  )
A.$\frac{7}{2}$B.3C.$\sqrt{10}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义域为R上的函数f(x)=$\left\{\begin{array}{l}{\frac{1}{|x-1|},x≠1}\\{2,x=1}\end{array}\right.$,函数h(x)=f2(x)+bf(x)+c(其中b、c为常数)有5个不同的零点x1,x2,x3,x4,x5,下列命题不正确的是(  )
A.4+2b+c=0B.b<0,c>0
C.(x1-1)(x2-1)(x3-1)(x4-1)(x5-1)=0D.x1+x2+x3+x4+x5=10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知对任意的x,y∈R,都有f(x•y)=xf(y)+yf(x)成立.若数列{an}满足${a_n}=f({2^n})(n∈{N^*})$,且a1=2,则数列{an}的前n项和${S_n}=(n-1){2^{n+1}}+2$.

查看答案和解析>>

同步练习册答案