精英家教网 > 高中数学 > 题目详情
15.圆x2+y2+2x-6y+1=0关于直线ax-by+3=0(a>0,b>0)对称,则$\frac{1}{a}$+$\frac{3}{b}$的最小值是(  )
A.2$\sqrt{3}$B.6$\frac{2}{3}$C.4D.5$\frac{1}{3}$

分析 求出圆的圆心代入直线方程,然后利用基本不等式求解最值即可.

解答 解:∵圆x2+y2+2x-6y+1=0?(x+1)2+(y-3)2=9,
圆x2+y2+2x-6y+1=0关于直线ax-by+3=0(a>0,b>0)对称,
∴该直线经过圆心(-1,3),
把圆心(-1,3)代入直线ax-by+3=0(a>0,b>0),得:-a-3b+3=0
∴a+3b=3,a>0,b>0
∴$\frac{1}{a}$+$\frac{3}{b}$=$\frac{1}{3}$×($\frac{1}{a}$+$\frac{3}{b}$)(a+3b)=$\frac{1}{3}$(10+$\frac{3b}{a}$+$\frac{3a}{b}$)≥5$\frac{1}{3}$
当且仅当$\frac{3b}{a}$=$\frac{3a}{b}$时取得最小值为5$\frac{1}{3}$
故选D.

点评 本题考查代数和的最小值的求法,是中档题,解题时要注意圆的性质和均值定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.复数$\frac{5}{i-2}$=(  )
A.i-2B.i+2C.-2-iD.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知偶函数f(x)在R上的任一取值都有导数,f′(1)=-2,f(x-2)=f(x+2),则曲线y=f(x)在x=4k-5(k∈Z)处的切线的斜率为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,B=30°,AC=2,则AB+BC的最大值为2($\sqrt{6}$+$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“函数f(x)=x2-6mx+6的减区间为(-∞,3]”是“m=1”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知关于x的不等式lnx-$\frac{1}{2}$ax2+(1-a)x+1≤b恒成立;则ab的最小值为(  )
A.1+$\frac{2}{e}$B.$\frac{1}{2}$+$\frac{2}{e}$C.1+$\frac{1}{e}$D.$\frac{1}{2}$+$\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为了了解学生的数学复习情况,某校从第四次模拟考试成绩中抽取一个样本,将样本分成5组,绘成频率分布直方图,图中从左到右小矩形面积之比为2:5:10:5:3,最左边一组的频数为4,请结合直方图解决下列问题.
(Ⅰ)求中位数;
(Ⅱ)列出频率分布表;
(Ⅲ)从样本中成绩在[120,140)内的学生中任取2个学生,若成绩在[120,130)内奖给1个小红旗;若成绩在[130,140)内奖给2个小红旗.设X表示2个学生所得红旗总数,求X的分布列和E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.与$\overrightarrow a=(2,-1,2)$共线,且满足$\overrightarrow a•\overrightarrow z$=-18的向量$\overrightarrow z$的坐标为(-4,2,-4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在复平面内复数1+i,1-i对应的点分别为A,B,若点C为线段AB的中点,则点C对应的复数是1.

查看答案和解析>>

同步练习册答案