精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
sin2x+2cosx•sin(x-
π
3
)+sinxcosx.
(1)求函数y=f(x)的增区间
(2)若2f(x)-m+1=0在[
π
6
12
]有两个相异的实根,求m的取值范围.
考点:三角函数中的恒等变换应用,正弦函数的图象
专题:三角函数的图像与性质
分析:(1)由三角函数中的恒等变换应用化简函数解析式可得f(x)=2sin(2x-
π
3
),由-
π
2
+2kπ≤2x-
π
3
π
2
+2kπ,即可解得函数y=f(x)的增区间.
(2)由已知转化为方程f(x)=
m-1
2
两个相异的实根,即y=f(x)图象与y=
m-1
2
图象有两个交点,结合函数图象,有1≤
m-1
2
<2,即可解得m的取值范围.
解答: 解:(1)∵f(x)=
3
sin2x+2cosx•sin(x-
π
3
)+sinxcosx…2分
=
3
×(
1-cos2x
2
)+2cosx(
1
2
sinx-
3
2
cosx)+sinxcosx
=sin2x-
3
cos2x
=2sin(2x-
π
3
)…4分
∴由-
π
2
+2kπ≤2x-
π
3
π
2
+2kπ,得-
π
12
+kπ≤x≤
12
+kπ(k∈Z)…6分
(2)2f(x)-m+1=0在[
π
6
12
]内有两个相异的实根,
f(x)=
m-1
2
两个相异的实根,
即y=f(x)图象与y=
m-1
2
图象有两个交点,…8分
结合函数图象,当1≤
m-1
2
<2,
解得:m∈[3,5)时原方程有两个相异的实根,
故m∈[3,5)…13分
点评:本题主要考查了三角函数中的恒等变换应用,正弦函数的图象和性质的应用,考查了转化思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在棱长为2的正方体ABCD-A1B1C1D1中,E为棱AB的中点,点P在平面A1B1C1D1内,若D1P⊥平面PCE,试求线段D1P的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=AD=2,四边形AB⊥CD,BC∥AD且BC=4,点M为PC中点.
(1)求证:平面ADM⊥平面PBC;
(2)求点P到平面ADM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,长方体ABCD-A1B1C1D1中,底面A1B1C1D1是正方形,E为棱AA1上任意一点,F是CD的中点.
(1)证明:BD⊥EC1
(2)若AF∥平面C1DE,求
AE
A1A
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△OAB中,P为线段AB上的一点,
OP
=x
OA
+y
OB
,且
BP
=3
PA
,则(  )
A、x=
2
3
,y=
1
3
B、x=
1
3
,y=
2
3
C、x=
1
4
,y=
3
4
D、x=
3
4
,y=
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆锥的母线长为2cm,底面圆的周长为2πcm,则圆锥的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列给出的图形中,绕给出的轴旋转一周(如图所示),能形成圆台的是
 
(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

2008年5月18日某爱心人士为一位孤儿去银行存款a元,存的是一年定期储蓄;2009年5月18日他将到期存款的本息一起取出,再加a元后,还存一年的定期储蓄,此后每年5月18日都如此;假设银行一年定期储蓄的年利率r不变,直到2015年5月18日这位孤儿准备上大学时,他将所有的存款和利息全部取出并且资助给这位孤儿,取出的钱数共为(  )
A、a(1+r)7
B、a[(1+r)7+(1+r)]元
C、
a
r
[(1+r)7-r]元
D、
a
r
[(1+r)8-(1+r)]元

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}各项均为正数,求证:
1
a1
+
a2
+
1
a2
+
a3
+…+
1
an-1
+
an
=
n-1
an
+
a1

查看答案和解析>>

同步练习册答案