2£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£®ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌΪ£º¦Ñ=4cos¦È£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{{\begin{array}{l}{x=3+\frac{{\sqrt{3}}}{2}t}\\{y=\frac{1}{2}t}\end{array}}\right.$£¨tΪ²ÎÊý£©£¬Ö±ÏßlÓëC½»ÓÚP1£¬P2Á½µã£®
£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì¼°Ö±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©ÒÑÖªQ£¨3£¬0£©£¬Çó||P1Q|-|P2Q||µÄÖµ£®

·ÖÎö £¨1£©ÇúÏßCµÄ¼«×ø±ê·½³Ìת»¯Îª¦Ñ2=4¦Ñcos¦È£¬ÓÉ$\left\{{\begin{array}{l}{{¦Ñ^2}={x^2}+{y^2}}\\{¦Ñcos¦È=x}\end{array}}\right.$ÄÜÇó³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£¬Ö±ÏßlÏûÈ¥²ÎÊýtµÃÄÜÇó³öÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©½«Ö±ÏßlµÄ²ÎÊý·½³Ì´úÈëx2+y2=4x£¬µÃ£º${t^2}+\sqrt{3}t-3=0$£¬ÔÙÓɵãQ£¨3£¬0£©ÔÚÔ²CµÄÄÚ²¿£¬ÄÜÇó³ö||P1Q|-|P2Q||µÄÖµ£®

½â´ð ½â£º£¨1£©¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌΪ£º¦Ñ=4cos¦È£¬¡à¦Ñ2=4¦Ñcos¦È£¬
ÓÉ$\left\{{\begin{array}{l}{{¦Ñ^2}={x^2}+{y^2}}\\{¦Ñcos¦È=x}\end{array}}\right.$µÃx2+y2=4x£¬
¼´CµÄÖ±½Ç×ø±ê·½³ÌΪ£º£¨x-2£©2+y2=4£¬
¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{{\begin{array}{l}{x=3+\frac{{\sqrt{3}}}{2}t}\\{y=\frac{1}{2}t}\end{array}}\right.$£¨tΪ²ÎÊý£©£¬
¡àÖ±ÏßlÏûÈ¥²ÎÊýtµÃÖ±ÏßlµÄÆÕͨ·½³ÌΪ£º$x-\sqrt{3}y-3=0$£®
£¨2£©½«Ö±ÏßlµÄ²ÎÊý·½³Ì´úÈëx2+y2=4x£¬µÃ£º${t^2}+\sqrt{3}t-3=0$£¬
ÉèP1£¬P2µÄ¶ÔÓ¦²ÎÊý·Ö±ðΪt1£¬t2£¬¡à${t_1}+{t_2}=-\sqrt{3}£¬{t_1}{t_2}=-3$£¬
¶ø£¨3-2£©2+02£¼4£¬¼´µãQ£¨3£¬0£©ÔÚÔ²CµÄÄÚ²¿£¬
¡à$|{|{{P_1}Q}|-|{{P_2}Q}|}|=|{|{t_1}|-|{t_2}|}|=|{{t_1}+{t_2}}|=\sqrt{3}$£®

µãÆÀ ±¾Ì⿼²éÇúÏßµÄÖ±Ïß×ø±ê·½³Ì¡¢Ö±ÏߵįÕͨ·½³ÌµÄÇ󷨣¬¿¼²éÁ½Ï߶εÄÖ®²îµÄ¾ø¶ÔÖµµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¼«×ø±ê¡¢Ö±Ïß×ø±ê»¥»¯¹«Ê½µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªtan¦Á=$\sqrt{3£¬}$¦Á¡Ê£¨0£¬¦Ð£©£¬Ôòsin¦Á=$\frac{\sqrt{3}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑ֪ʵÊýx£¬yÂú×ã$\left\{\begin{array}{l}{y¡Ý\frac{x+3}{4}}\\{\frac{3x}{25}+\frac{y}{5}¡Ü1}\\{x-1¡Ý0}\end{array}\right.$£¬Èôz=mx-y-3£¬ÇÒz¡Ý0ºã³ÉÁ¢£¬ÔòʵÊýmµÄȡֵ²»¿ÉÄÜΪ£¨¡¡¡¡£©
A£®7B£®8C£®9D£®10

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èô¹ØÓÚx£¬yµÄ¶þÔªÒ»´Î·½³Ì×é$\left\{\begin{array}{l}ax+y=a+1\\ x+ay=2a\end{array}\right.$Î޽⣬Ôòa=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªmΪʵÊý£¬iΪÐéÊýµ¥Î»£¬Èôm+£¨m2-1£©i£¾0£¬Ôò$\frac{m+i}{1-i}$=£¨¡¡¡¡£©
A£®-1B£®1C£®-iD£®i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=2|x|£¬¼Ça=f£¨log0.53£©£¬b=log25£¬c=f£¨0£©£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÎª£¨¡¡¡¡£©
A£®a£¼b£¼cB£®a£¼c£¼bC£®c£¼a£¼bD£®c£¼b£¼a

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ÔÚÈýÀâ×¶P-ABCÖУ¬ÒÑÖªPA=AB£¬¡ÏABCΪֱ½Ç£¬PA¡ÍBC£®µãD£¬E·Ö±ðΪPB£¬BCµÄÖе㣮
£¨1£©ÇóÖ¤£ºAD¡ÍÆ½ÃæPBC£»
£¨2£©ÈôFÔÚÏß¶ÎACÉÏ£¬µ±$\frac{AF}{FC}$ΪºÎֵʱ£¬AD¡ÎÆ½ÃæPEF£¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Èý½ÇÐÎABCÖУ¬C=90¡ã£¬A=30¡ã£¬¹ýC×÷ÉäÏßl½»Ïß¶ÎABÓÚµãD£¬ÔòS¡÷ABC£¾2S¡÷ACDµÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{1}{2}$C£®$\frac{2}{3}$D£®$\frac{3}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÉèÊýÁÐ{an}µÄǰnÏîºÍSn=2an-a1£¬ÇÒa1£¬a2+1£¬a3³ÉµÈ²îÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»      
£¨2£©ÇóÊýÁÐ$\{\frac{1}{a_n}-n\}$µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸