精英家教网 > 高中数学 > 题目详情
19.如图,在矩形ABCD中,AB=$\sqrt{3}$AD,点Q为线段CD(含端点)上一个动点,且$\overrightarrow{DQ}$=λ$\overrightarrow{QC}$,BQ交AC于P,且$\overrightarrow{AP}$=μ$\overrightarrow{PC}$,若AC⊥BP,则λ-μ=-1.

分析 可由$\overrightarrow{DQ}=λ\overrightarrow{QC}$得到$\overrightarrow{DC}=(λ+1)\overrightarrow{QC}$,从而便可得到$\frac{AB}{QC}=λ+1$,而同理可以由$\overrightarrow{AP}=μ\overrightarrow{PC}$可以得出$\frac{AP}{PC}=μ$,而△PAB和△PCQ相似,从而根据相似三角形对应边的比例关系便可得出λ+1=μ,从而可得出λ-μ的值.

解答 解:$\overrightarrow{DQ}=λ\overrightarrow{QC}$;
∴$\overrightarrow{DC}=(λ+1)\overrightarrow{QC}$;
∴AB=DC=(λ+1)QC;
∴$\frac{AB}{QC}=λ+1$;
∵$\overrightarrow{AP}=μ\overrightarrow{PC}$;
∴AP=μPC;
∴$\frac{AP}{PC}=μ$;
又△PCQ∽△PAB;
∴$\frac{AB}{QC}=\frac{AP}{PC}$;
∴λ+1=μ;
∴λ-μ=-1.
故答案为:-1.

点评 考查向量数乘的几何意义,以及三角形相似的概念,相似三角形对应边的比例关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.求cos$\frac{7}{6}$π+sin$\frac{2}{3}$π-cos$\frac{8}{3}$π+sin$\frac{13}{6}$π+cos$\frac{17}{6}$π的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.二项式${({\frac{x}{{\sqrt{2}}}-y})^8}$的展开式中,x4y4与x2y6项的系数之和是$\frac{63}{2}$(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若i(bi+1)是纯虚数,i是虚数单位,则实数b=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.定义在R上的函数f(x)=$\frac{xsin2x}{{x}^{2}+a}$的图象如图所示,则实数a的可能值为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$tan(α+\frac{π}{4})=2$,则tan2α=(  )
A.$\frac{3}{4}$B.$\frac{3}{5}$C.$-\frac{3}{4}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.考生甲填报某高校专业意向,打算从5个专业中挑选3个,分别作为第一、第二、第三志愿,则不同的填法有(  )
A.10种B.60种C.125种D.243种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知sin(π-α)=-2sin($\frac{π}{2}$+α),则tanα的值为(  )
A.$\frac{1}{2}$B.2C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=(1+cosx)sinx在[-π,π]的图象的大致形状是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案