9£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬½¹µãÔÚxÖáÉϵÄÍÖÔ²C£º$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{{b}^{2}}$=1¾­¹ýµã£¨b£¬2e£©£¬ÆäÖÐeΪÍÖÔ²CµÄÀëÐÄÂÊ£®¹ýµãT£¨1£¬0£©×÷бÂÊΪk£¨k£¾0£©µÄÖ±Ïßl½»ÍÖÔ²CÓÚA£¬BÁ½µã£¨AÔÚxÖáÏ·½£©£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©¹ýµãOÇÒÆ½ÐÐÓÚlµÄÖ±Ïß½»ÍÖÔ²CÓÚµãM£¬N£¬Çó $\frac{AT•BT}{MN2}$ µÄÖµ£»
£¨3£©¼ÇÖ±ÏßlÓëyÖáµÄ½»µãΪP£®Èô$\overrightarrow{AP}$=$\frac{2}{5}$$\overrightarrow{TB}$£¬ÇóÖ±ÏßlµÄбÂÊk£®

·ÖÎö £¨1£©ÓÉÌâÒâµÃe2=$\frac{{c}^{2}}{{a}^{2}}=\frac{{c}^{2}}{8}$£¬$\frac{{b}^{2}}{8}+\frac{4{e}^{2}}{{b}^{2}}=1$£®ÓÖa2=b2+c2£¬$\frac{{b}^{2}}{8}+\frac{8-{b}^{2}}{2{b}^{2}}=1$£¬½âµÃb2£»
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£®
ÁªÁ¢Ö±ÏßlÓëÍÖÔ²·½³Ì$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1}\end{array}\right.$£¬ÏûÈ¥y£¬µÃ£¨2k2+1£©x2-4k2x+2k2-8=0£¬¿ÉÉèÖ±ÏßMN·½³ÌΪy=kx£¬ÁªÁ¢Ö±ÏßMNÓëÍÖÔ²·½³Ì$\left\{\begin{array}{l}{y=kx}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1}\end{array}\right.$£¬ÏûÈ¥yµÃ£¨2k2+1£©x2=8£¬ÓÉMN¡Îl£¬µÃ$\frac{AT•BT}{M{N}^{2}}=\frac{£¨1-{x}_{1}£©•£¨{x}_{2}-1£©}{{£¨x}_{M}-{x}_{N}£©^{2}}$
ÓÉ£¨1-x1£©•£¨x2-1£©=-[x1x2-£¨x1+x2£©+1]=$\frac{7}{2{k}^{2}+1}$£®µÃ£¨xM-xN£©2=4x2=$\frac{32}{2{k}^{2}+1}$£®¼´¿É£®
 £¨3£©ÔÚy=k£¨x-1£©ÖУ¬Áîx=0£¬Ôòy=-k£¬ËùÒÔP£¨0£¬-k£©£¬´Ó¶ø $\overrightarrow{AP}=£¨-{x}_{1}£¬-k-{y}_{1}£©£¬\overrightarrow{TB}=£¨{x}_{2}-1£¬{y}_{2}£©$£¬ÓÉ$\overrightarrow{AP}$=$\frac{2}{5}$$\overrightarrow{TB}$µÃ $-{x}_{1}=\frac{2}{5}£¨{x}_{2}-1£©£¬¼´{x}_{1}+\frac{2}{5}{x}_{2}=\frac{2}{5}$¡­¢Ù£¬ÓÉ£¨2£©Öª$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=\frac{4{k}^{2}}{2{k}^{2}+1}}\\{{x}_{1}{x}_{2}=\frac{2{k}^{2}-8}{2{k}^{2}+1}}\end{array}\right.$¡­¢ÚÓÉ¢Ù¢ÚµÃ${x}_{1}=\frac{-4{k}^{2}+2}{3£¨2{k}^{2}+1£©}£¬{x}_{2}=\frac{16{k}^{2}-2}{3£¨2{k}^{2}+1£©}$⇒50k4-83k2-34=0£¬½âµÃk2

½â´ð ½â£º£¨1£©ÒòΪÍÖÔ²ÍÖÔ²C£º$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{{b}^{2}}$=1¾­¹ýµã£¨b£¬2e£©ËùÒÔ$\frac{{b}^{2}}{8}+\frac{4{e}^{2}}{{b}^{2}}=1$£®
ÒòΪe2=$\frac{{c}^{2}}{{a}^{2}}=\frac{{c}^{2}}{8}$£¬ËùÒÔ$\frac{{b}^{2}}{8}+\frac{{c}^{2}}{2{b}^{2}}=1$£¬
ÓÖ¡ßa2=b2+c2£¬$\frac{{b}^{2}}{8}+\frac{8-{b}^{2}}{2{b}^{2}}=1$£¬½âµÃb2=4»òb2=8£¨ÉáÈ¥£©£®
ËùÒÔÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$£®
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®
ÒòΪT£¨1£¬0£©£¬ÔòÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£®
ÁªÁ¢Ö±ÏßlÓëÍÖÔ²·½³Ì$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1}\end{array}\right.$£¬ÏûÈ¥y£¬µÃ£¨2k2+1£©x2-4k2x+2k2-8=0£¬
ËùÒÔx1+x2=$\frac{4{k}^{2}}{2{k}^{2}+1}$£¬x1x2=$\frac{2{k}^{2}-8}{2{k}^{2}+1}$£®
ÒòΪMN¡Îl£¬ËùÒÔÖ±ÏßMN·½³ÌΪy=kx£¬
ÁªÁ¢Ö±ÏßMNÓëÍÖÔ²·½³Ì$\left\{\begin{array}{l}{y=kx}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1}\end{array}\right.$
ÏûÈ¥yµÃ£¨2k2+1£©x2=8£¬
½âµÃx2=$\frac{8}{2{k}^{2}+1}$
ÒòΪMN¡Îl£¬ËùÒÔ$\frac{AT•BT}{M{N}^{2}}=\frac{£¨1-{x}_{1}£©•£¨{x}_{2}-1£©}{{£¨x}_{M}-{x}_{N}£©^{2}}$
ÒòΪ£¨1-x1£©•£¨x2-1£©=-[x1x2-£¨x1+x2£©+1]=$\frac{7}{2{k}^{2}+1}$£®
£¨xM-xN£©2=4x2=$\frac{32}{2{k}^{2}+1}$£®
ËùÒÔ$\frac{AT•BT}{M{N}^{2}}=\frac{£¨1-{x}_{1}£©•£¨{x}_{2}-1£©}{{£¨x}_{M}-{x}_{N}£©^{2}}$=$\frac{7}{32}$£®
£¨3£©ÔÚy=k£¨x-1£©ÖУ¬Áîx=0£¬Ôòy=-k£¬ËùÒÔP£¨0£¬-k£©£¬
´Ó¶ø $\overrightarrow{AP}=£¨-{x}_{1}£¬-k-{y}_{1}£©£¬\overrightarrow{TB}=£¨{x}_{2}-1£¬{y}_{2}£©$£¬
¡ß$\overrightarrow{AP}$=$\frac{2}{5}$$\overrightarrow{TB}$£¬$-{x}_{1}=\frac{2}{5}£¨{x}_{2}-1£©£¬¼´{x}_{1}+\frac{2}{5}{x}_{2}=\frac{2}{5}$¡­¢Ù
ÓÉ£¨2£©Öª$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=\frac{4{k}^{2}}{2{k}^{2}+1}}\\{{x}_{1}{x}_{2}=\frac{2{k}^{2}-8}{2{k}^{2}+1}}\end{array}\right.$¡­¢Ú
ÓÉ¢Ù¢ÚµÃ${x}_{1}=\frac{-4{k}^{2}+2}{3£¨2{k}^{2}+1£©}£¬{x}_{2}=\frac{16{k}^{2}-2}{3£¨2{k}^{2}+1£©}$⇒50k4-83k2-34=0£¬½âµÃk2=2»òk2=-$\frac{17}{50}$£¨Éᣩ£®
ÓÖÒòΪk£¾0£¬ËùÒÔk=$\sqrt{2}$£®¡­£¨16·Ö£©

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ·½³Ì¡¢Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ¡¢ÏòÁ¿ÔËËã¡¢·ÖÎöÎÊÌâ´¦ÀíÎÊÌâµÄÄÜÁ¦£¬¶ÔÔËËãÄÜÁ¦µÄÒªÇó½Ï¸ß£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªµãPʱÅ×ÎïÏßy2=-4xÉϵ͝µã£¬ÉèµãPµ½´ËÅ×ÎïÏßµÄ×¼ÏߵľàÀëΪd1£¬µ½Ö±Ïßx+y-4=0µÄ¾àÀëΪd2£¬Ôòd1+d2µÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®2B£®$\sqrt{2}$C£®$\frac{5}{2}$D£®$\frac{5\sqrt{2}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªÅ×ÎïÏßy2=px£¨p£¾0£©µÄ½¹µãΪF£¬¹ý½¹µãF×÷Ö±Ïß½»Å×ÎïÏßÓÚA¡¢BÁ½µã£¬ÒÔABΪֱ¾¶µÄÔ²µÄ·½³ÌΪx2+y2-2x-4y-4=0£¬Ôò´ËÅ×ÎïÏߵıê×¼·½³ÌΪy2=8x£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC1£¬C2µÄ¼«×ø±ê·½³Ì·Ö±ðΪ¦Ñ=2sin¦È£¬¦Ñcos£¨¦È-$\frac{¦Ð}{4}$£©=$\sqrt{2}$£®
£¨¢ñ£©ÇóC1ºÍC2½»µãµÄ¼«×ø±ê£»
£¨¢ò£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x=-\sqrt{3}+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬Ö±ÏßlÓëxÖáµÄ½»µãΪP£¬ÇÒÓëC1½»ÓÚA£¬BÁ½µã£¬Çó|PA|+|PB|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±Ïßl1£ºkx-y+2=0ÓëÖ±Ïßl2£ºx+ky-2=0ÏཻÓÚµãP£¬Ôòµ±ÊµÊýk±ä»¯Ê±£¬µãPµ½Ö±Ïßx-y-4=0µÄ¾àÀëµÄ×î´óֵΪ3$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖª¼¯ºÏM={x|x2-6x+5£¼0£¬x¡ÊZ}£¬N={1£¬2£¬3£¬4£¬5}£¬ÔòM¡ÉN=£¨¡¡¡¡£©
A£®{1£¬2£¬3£¬4}B£®{2£¬3£¬4£¬5}C£®{2£¬3£¬4}D£®{1£¬2£¬4£¬5}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®µÈ²îÊýÁÐ{an}ÖУ¬a2+a3+a4=3£¬SnΪµÈ²îÊýÁÐ{an}µÄǰnÏîºÍ£¬ÔòS5=£¨¡¡¡¡£©
A£®3B£®4C£®5D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®¹ÉƱÊг¡µÄǰÉíÊÇÆðÔ´ÓÚ1602ÄêºÉÀ¼ÈËÔÚ°¢Ä·Ë¹ÌغӴóÇÅÉϽøÐкÉÊô¶«Ó¡¶È¹«Ë¾¹ÉƱµÄÂòÂô£¬¶øÕý¹æµÄ¹ÉƱÊг¡×îÔç³öÏÖÔÚÃÀ¹ú£®2017Äê2ÔÂ26ºÅ£¬ÖйúÖ¤¼à»áÖ÷ϯÁõÊ¿Óà̸Á˶ԹÉÊеļ¸µã½¨Ò飬¸ø¹ã´ó¹ÉÃñÊ÷Á¢ÁËÐÅÐÄ£®×î½ü£¬ÕÅʦ¸µºÍÀîʦ¸µÒª½«¼ÒÖÐÏÐÖÃ×ʽð½øÐÐͶ×ÊÀí²Æ£®ÏÖÓÐÁ½ÖÖͶ×Ê·½°¸£¬ÇÒÒ»ÄêºóͶ×ÊÓ¯¿÷µÄÇé¿öÈçÏ£º
£¨1£©Í¶×ʹÉÊУº
Ͷ×ʽá¹û»ñÀû²»Åⲻ׬¿÷Ëð
¸ÅÂÊ$\frac{1}{2}$$\frac{1}{8}$$\frac{3}{8}$
£¨2£©¹ºÂò»ù½ð£º
Ͷ×ʽá¹û»ñÀû²»Åⲻ׬¿÷Ëð
¸ÅÂÊp$\frac{1}{3}$q
£¨¢ñ£©µ±$p=\frac{1}{2}$ʱ£¬ÇóqµÄÖµ£»
£¨¢ò£©ÒÑÖª¡°¹ºÂò»ù½ð¡±¿÷ËðµÄ¸ÅÂʱȡ°Í¶×ʹÉÊС±¿÷ËðµÄ¸ÅÂÊС£¬ÇópµÄȡֵ·¶Î§£»
£¨¢ó£©ÒÑÖªÕÅʦ¸µºÍÀîʦ¸µÁ½È˶¼Ñ¡ÔñÁË¡°¹ºÂò»ù½ð¡±À´½øÐÐͶ×Ê£¬¼ÙÉèÈýÖÖͶ×ʽá¹û³öÏֵĿÉÄÜÐÔÏàͬ£¬ÇóÒ»ÄêºóËûÃÇÁ½ÈËÖÐÖÁÉÙÓÐÒ»ÈË»ñÀûµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®¼ºÖªf£¨x£©=2sin4x+2cos4x+cos22x-$\sqrt{3}$sin4x£®
£¨1£©Çóº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚ£»
£¨2£©Çóº¯Êýf£¨x£©ÔÚÇø¼ä[$\frac{¦Ð}{16}$£¬$\frac{3¦Ð}{16}$]ÉϵÄ×îСֵ¼°È¡×îСֵʱ¶ÔÓ¦µÄxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸