精英家教网 > 高中数学 > 题目详情
17.在平面直角坐标系xOy中,以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C1,C2的极坐标方程分别为ρ=2sinθ,ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$.
(Ⅰ)求C1和C2交点的极坐标;
(Ⅱ)直线l的参数方程为:$\left\{\begin{array}{l}{x=-\sqrt{3}+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数),直线l与x轴的交点为P,且与C1交于A,B两点,求|PA|+|PB|.

分析 (Ⅰ)求出C1和C2的直角坐标方程,得出交点坐标,再求C1和C2交点的极坐标;
(Ⅱ)利用参数的几何意义,即可求|PA|+|PB|.

解答 解:(Ⅰ)由C1,C2极坐标方程分别为ρ=2sinθ,$ρcos({θ-\frac{π}{4}})=\sqrt{2}$’
化为平面直角坐标系方程分为x2+(y-1)2=1,x+y-2=0.       …(1分)
得交点坐标为(0,2),(1,1).                                    …(3分)
即C1和C2交点的极坐标分别为$({2,\frac{π}{2}})\;\;({\sqrt{2},\frac{π}{4}})$.…(5分)
(II)把直线l的参数方程:$\left\{\begin{array}{l}x=-\sqrt{3}+\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$(t为参数),代入x2+(y-1)2=1,
得${({-\sqrt{3}+\frac{{\sqrt{3}}}{2}t})^2}+{({\frac{1}{2}t-1})^2}=1$,…(7分)
即t2-4t+3=0,t1+t2=4,…(9分)
所以|PA|+|PB|=4.…(10分)

点评 本题考查极坐标方程转化为直角坐标方程,考查参数几何意义的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.如图,已知正四棱锥侧S-ABCD棱长为2,底面边长为$\sqrt{2}$,点O为底面ABCD中心,点M为SC中点,则异面直线OM与SB所成角的余弦值为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现了黄金分割均为0.618,这一数值也可以表示为m=2sin18°,若m2+n=4,则$\frac{m\sqrt{n}}{2co{s}^{2}27°-1}$=(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C;$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>c)的左、右焦点分别为F1(-c,0)、F2(c,0),过原点O的直线(与x轴不重合)与椭圆C相交于D、Q两点,且|DF1|+|QF1|=4,P为椭圆C上的动点,△PF1F2的面积的最大值为$\sqrt{3}$.
(1)求椭圆C的离心率;
(2)若A、B是椭圆C上关于x轴对称的任意两点,设点N(-4,0),连接NA与椭圆C相交于点E,直线BE与x轴相交于点M,试求$\frac{N{F}_{2}}{M{F}_{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知圆M与y轴相切,圆心在直线y=$\frac{1}{2}$x上,并且在x轴上截得的弦长为2$\sqrt{3}$.则圆M的标准方程为(x-2)2+(y-1)2=4或(x+2)2+(y+1)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.将函数f(x)=sinx的图象向右平移$\frac{π}{3}$个单位后得到函数y=g(x)的图象,则函数y=f(x)+g(x)的最大值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在平面直角坐标系xOy中,焦点在x轴上的椭圆C:$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{{b}^{2}}$=1经过点(b,2e),其中e为椭圆C的离心率.过点T(1,0)作斜率为k(k>0)的直线l交椭圆C于A,B两点(A在x轴下方).
(1)求椭圆C的标准方程;
(2)过点O且平行于l的直线交椭圆C于点M,N,求 $\frac{AT•BT}{MN2}$ 的值;
(3)记直线l与y轴的交点为P.若$\overrightarrow{AP}$=$\frac{2}{5}$$\overrightarrow{TB}$,求直线l的斜率k.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°,且AA1=AB=2,E,F分别是CC1,BC的中点.
(1)求证:平面AB1F⊥平面AEF;
(2)求点C到平面AEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设数列{an}的前n项和为Sn,且a1=2,an+1=Sn,n∈N*
(1)写出数列{an}的第5项a5=16;
(2)已知等差数列{bn}中,有b2=a1,b3=a3,设cn=$\frac{b_n}{a_n}$,记数列{cn}的前n项和为Tn,求证:Tn<4(n∈N*).

查看答案和解析>>

同步练习册答案