精英家教网 > 高中数学 > 题目详情
7.如图,已知正四棱锥侧S-ABCD棱长为2,底面边长为$\sqrt{2}$,点O为底面ABCD中心,点M为SC中点,则异面直线OM与SB所成角的余弦值为$\frac{3}{4}$.

分析 连接DB,取SD的中点N,连接ON,MN,OC,则ON∥SB,∠MON是异面直线OM与SB所成角,求出三角形的三边,利用余弦定理,可得结论.

解答 解:连接DB,取SD的中点N,连接ON,MN,OC,则ON∥SB,
∴∠MON是异面直线OM与SB所成角,
又cos∠SCO=$\frac{1}{2}$,∠SCO=60°
∴OM=1,
∵ON=1,MN=$\frac{\sqrt{2}}{2}$,
∴cos∠MON=$\frac{1+1-\frac{1}{2}}{2×1×1}$=$\frac{3}{4}$,
故答案为$\frac{3}{4}$.

点评 本题考查异面直线OM与SB所成角的余弦值,考查余弦定理的运用,正确找出异面直线OM与SB所成角是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)的定义域为R,当x∈[-2,2]时,f(x)单调递减,且函数f(x+2)为偶函数,则下列结论正确的是(  )
A.f(π)<f(3)<f($\sqrt{2}$)B.f(π)<f($\sqrt{2}$)<f(3)C.f($\sqrt{2}$)<f(3)<f(π)D.f($\sqrt{2}$)<f(π)<f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义[x]表示不超过x的最大整数,例如[2.11]=2,[-1.39]=-2,执行如下图所示的程序框图,则输出m的值为
(  )
A.$\frac{19}{3}$B.$\frac{53}{8}$C.$\frac{171}{6}$D.$\frac{185}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.简阳羊肉汤已入选成都市级非遗项目,成为简阳的名片.当初向各地作了广告推广,同时广告对销售收益也有影响.在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
(Ⅰ)根据频率分布直方图,计算图中各小长方形的宽度;
(Ⅱ)根据频率分布直方图,估计投入4万元广告费用之后,销售收益的平均值(以各组的区间中点值代表该组的取值);
(Ⅲ)按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元)12345
销售收益y(单位:百万元)2327
表中的数据显示,x与y之间存在线性相关关系,请将(Ⅱ)的结果填入空白栏,并计算y关于x的回归方程.回归直线的斜率和截距的最小二乘估计公式分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.空间四边形OABC中,M,N分别是对边OA,BC的中点,点G为MN中点,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,则$\overrightarrow{OG}$可以用基底{$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$}表示为(  )
A.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$+$\frac{1}{4}$$\overrightarrow{c}$B.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$+$\frac{1}{3}$$\overrightarrow{c}$C.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$+$\frac{1}{6}$$\overrightarrow{c}$D.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$-$\frac{1}{4}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若集合A={x|x(x-3)≤0,x∈N},B={-1,0,1},则集合A∩B为(  )
A.{-1,0}B.{1}C.{0,1}D.{-1,0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知点P时抛物线y2=-4x上的动点,设点P到此抛物线的准线的距离为d1,到直线x+y-4=0的距离为d2,则d1+d2的最小值是(  )
A.2B.$\sqrt{2}$C.$\frac{5}{2}$D.$\frac{5\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a,b分别是△ABC内角A,B的对边,且bsin2A=$\sqrt{3}$acosAsinB,函数f(x)=sinAcos2x-sin2$\frac{A}{2}$sin 2x,x∈[0,$\frac{π}{2}$].
(Ⅰ)求A;
(Ⅱ)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C1,C2的极坐标方程分别为ρ=2sinθ,ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$.
(Ⅰ)求C1和C2交点的极坐标;
(Ⅱ)直线l的参数方程为:$\left\{\begin{array}{l}{x=-\sqrt{3}+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数),直线l与x轴的交点为P,且与C1交于A,B两点,求|PA|+|PB|.

查看答案和解析>>

同步练习册答案