精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,等式f(x)f(y)=f(x+y)成立.若数列{an}满足a1=f(0),f(an+1)=
1
f(-2-an)
(n∈N*),则a2009的值为
 
考点:数列与函数的综合
专题:等差数列与等比数列
分析:利用f(x+y)=f(x)f(y)求得f(x2)-f(x1)<0,根据函数单调性的定义推断出函数为减函数.根据f(an+1)=
1
f(-2-an)
和f(x+y)=f(x)f(y)整理求得an+1-an=2,进而可判断出{an}是以1为首项,2为公差的等差数列.进而根据等差数列通项公式求得an.由此能求出结果.
解答: 解:令x=-1,y=0,得f(-1)=f(-1)•f(0),
由题意知f(-1)≠0,所以f(0)=1,故a1=f(0)=1.
当x>0时,-x<0,f(0)=f(-x)•f(x)=1,进而得0<f(x)<1.
设x1,x2∈R且x1<x2,则x2-x1>0,
0<f(x2-x1)<1,f(x2)-f(x1
=f(x1+(x2-x1))-f(x1)=f(x1)[f(x2-x1)-1]<0.
即f(x2)<f(x1),所以y=f(x)是R上的减函数.
由f(an+1)=
1
f(-2-an)
(n∈N*),得f(an+1)f(-2-an)=1,
所以f(an+1-an-2)=f(0).
因为y=f(x)是R上的减函数,所以an+1-an-2=0,
即an+1-an=2,
所以{an}是以1为首项,2为公差的等差数列.
所以an=1+(n-1)×2=2n-1.
所以a2009=2×2009-1=4017.
故答案为:4017.
点评:本题主要考查数列的第2009项的求法,考查数列与函数的综合应用,解题时要认真审题,灵活利用函数的性质来解决数列的问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,A、B、C是三角形的三内角,a、b、c是三内角对应的三边,已知
tanA
tanB
=
2c-b
b
,求角A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

一组数据23,27,20,18,x,12,它们的中位数是21,即x是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα-cosα=-
1
5
,则sin2α=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈R,恒有x2-x+
1
4
≥0”的否定是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中的a1,a4025是函数f(x)=
1
3
x3-4x2+6x-1的极值点,则log2a2013=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c.已知sinB=
5
13
,且a,b,c成等比数列.则
1
tanA
+
1
tanC
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(1+ax)(1+x)5的展开式中x2的系数为-5,则a=(  )
A、-4B、-3C、-2D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数f(x)=cosωx-
3
sinωx的图象向左平移
π
2
个单位,若所得的图象与原图象重合,则ω的值不可能等于(  )
A、4B、6C、8D、12

查看答案和解析>>

同步练习册答案