精英家教网 > 高中数学 > 题目详情
在△ABC中,A、B、C是三角形的三内角,a、b、c是三内角对应的三边,已知
tanA
tanB
=
2c-b
b
,求角A的大小.
考点:正弦定理
专题:解三角形
分析:由三角函数公式和正弦定理可得
sinAcosB
sinBcosA
=
2sinC-sinB
sinB
,化简可得cosA=
1
2
,可得角A的大小.
解答: 解:由已知
tanA
tanB
=
2c-b
b

根据正弦定理可得
sinAcosB
sinBcosA
=
2sinC-sinB
sinB

∴sinAcosB+sinBcosA=2sinCcosA,
∴sin(A+B)=2sinCcosA,
∴sinC=2sinCcosA,
解得cosA=
1
2

∵A为三角形的内角,∴A=60°
点评:本题考查解三角形,涉及三角函数的化简运算,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图为150辆汽车通过某路段时速度的频率分布直方图.根据提供的频率分布直方图,求下列问题:
(1)速度在[60,70)内的汽车大约有多少.
(2)估计汽车的平均速度.
(3)估计汽车速度的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),
a
b
之间有关系|k
a
+
b
|=
3
|
a
-k
b
|,(k≥2).
(1)用k表示
a
b

(2)求
a
b
的最小值,并求此时
a
b
的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,A={x|-4≤x≤2},B={x|-1<x≤5},C={x|x≤0或x>3}
(1)求A∪B,B∩C;
(2)求(∁UA)∪C.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,an-an-1=2(n≥2),a1=1
(1)求数列的第10项.
(2)设数列{bn}中bn=2n×an,求数列{bn}的前n项和sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
(x+1)2
x2+1
+sinx,若f(m)=2,则f(-m)的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y=ax2的焦点坐标为(0,1),则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y∈R,
a
=(x,1),
b
=(1,y),
c
=(2,-4),且
a
c
b
c
,则(
a
-2
b
)•
c
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,等式f(x)f(y)=f(x+y)成立.若数列{an}满足a1=f(0),f(an+1)=
1
f(-2-an)
(n∈N*),则a2009的值为
 

查看答案和解析>>

同步练习册答案