精英家教网 > 高中数学 > 题目详情
已知cosx=
3
5
,x∈(π,2π),则sin(π-x)=
 
考点:同角三角函数基本关系的运用,运用诱导公式化简求值
专题:三角函数的求值
分析:由条件利用诱导公式、同角三角函数的基本关系求得所给式子的值.
解答: 解:∵cosx=
3
5
,x∈(π,2π),则sin(π-x)=sinx=-
1-cos2x
=-
4
5

故答案为:-
4
5
点评:本题主要考查同角三角函数的基本关系、诱导公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点M的坐标(x,y)满足不等式组
x≥0
y≥0
x+2y≤6
3x+y≤12
,则x-y的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

要得到函数f(x)=sin(2x+
6
)的图象,只需将函数g(x)=sin(2x+
π
3
)的图象(  )
A、向左平移
π
2
个单位长度
B、向右平移
π
2
个单位长度
C、向左平移
π
4
个单位长度
D、向右平移
π
4
个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
sin
πx
2
,x≤0
f(x-1)-f(x-2),x>0
,则f(2)=
 
;f(2014)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果复数(a+i)(1-i)的模为
10
,则实数a的值为(  )
A、2
B、2
2
C、±2
D、±2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|-1<x<2},集合N={x|1<x<3},则M∪N=(  )
A、{x|-1<x<3}
B、{x|-1<x<2}
C、{x|1<x<3}
D、{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

点(1,2,3)关于原点的对称点的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=axekx-1,g(x)=lnx+kx.
(Ⅰ)求g(x)的单调区间;
(Ⅱ)若k≠1,f(x)≥g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系中有一个平行四边形ABCD,已知点A为(-1,-2),点B(0,2),点C为(4,3).试用向量的相关知识,求点D的坐标.

查看答案和解析>>

同步练习册答案