精英家教网 > 高中数学 > 题目详情
如图,在平面直角坐标系中有一个平行四边形ABCD,已知点A为(-1,-2),点B(0,2),点C为(4,3).试用向量的相关知识,求点D的坐标.
考点:中点坐标公式
专题:直线与圆
分析:由条件可得可得
AD
=
BC
,利用两个向量相等的条件,两个向量坐标形式的运算法则,求得点D的坐标.
解答: 解:设点D(x,y),由四边形ABCD为平行四边形,可得
AD
=
BC
,即(x+1,y+2)=(4,1),
∴x+1=4,y+2=1,求得x=3,y=-1,
可得点D的坐标为(3,-1).
点评:本题主要考查两个向量相等的条件,两个向量坐标形式的运算,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知cosx=
3
5
,x∈(π,2π),则sin(π-x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-alnx(a∈R),
(1)当a<0时,若f(x)在[1,e]上的最大值与最小值之和为2+e,求实数a值;
(2)令h(x)=f(x)-
a-1
x
,讨论h(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过点A(-2,0),B(0,2),且圆心C在直线y=x上,又直线l:y=kx+1与圆C相交于P、Q两点.
(1)求圆C的方程;
(2)若
OP
OQ
=-2,求实数k的值;
(3)过点(0,4)作动直线m交圆C于E,F两点.试问:在以EF为直径的所有圆中,是否存在这样的圆P,使得圆P经过点M(2,0)?若存在,求出圆P的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面].

查看答案和解析>>

科目:高中数学 来源: 题型:

关于曲线C:
x2
4
+y4
=1,给出下列四个结论:
①曲线C是椭圆;              
②关于坐标原点中心对称;
③关于直线y=x轴对称;      
④所围成封闭图形面积小于8.
则其中正确结论的序号是
 
.(注:把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙O:x2+y2=1,直线l:y=k(x-2)与⊙O交于A、B两点,设A、B的中点为M,则点M的轨迹形成的曲线长度为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

⊙O1,⊙O2相交于A,B,⊙O2过⊙O1的圆心O1点.
(1)如图1,过A做⊙O1的一条直径AC,连接CB并延长交⊙O2于点D,连接DO1,求证:DO1⊥AC;
(2)如图2,过A做⊙O1的一条非直径的弦AC,连接CB并延长交⊙O2于点D,则DO1与AC还垂直吗?请证明你的结论

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax-(1+a2)x2,其中a>0,区间I={x|f(x)>0},设区间(α,β)的长度定义为l=β-α
(1)求该函数在区间I上的长度l(用a表示)
(2)给定常数k∈(0,1),当1-k≤a≤1+k时,求I长度的最小值g(k).
(3)对(2)的g(k),k∈(0,1),是否存在实数m,n,使得y=g(k)的定义域为[m,n],值域为[
1
n
1
m
],若存在,求出m,n的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案