精英家教网 > 高中数学 > 题目详情
6.若平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-1,x),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则x的值为(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

分析 利用向量平行的性质得到-1-2x=0,解之即可.

解答 解:平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-1,x),且$\overrightarrow{a}$∥$\overrightarrow{b}$,
∴-1-2x=0,
解得x=-$\frac{1}{2}$,
故选:D.

点评 本题考查的知识点是平行向量与共线向量,其中根据两个向量平行,坐标交叉相乘差为0,构造一个关于x的方程,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知数列{an}中,a1=5,a2=2,an=2an-1+3an-2(n≥3).
(1)求证:数列{an+an-1}为等比数列
(2)求数列{n•an}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知复数z=(a2+2a-3)+(a+3)i,其中a∈R,i为虚数单位.
(1)若复数z为纯虚数,求实数a的值;
(2)若复数z在复平面内对应的点在第一象限,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知集合A≠∅,B={1,2,3,4,5,6,7},若x∈A,必有x∈B,且8-x∈A成立,则集合A最多有15个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.对于数列{an},若前n项和Sn=2an-3n.
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(1,$\frac{\sqrt{3}}{2}$),左焦点为F1(-$\sqrt{3}$,0).
(1)求椭圆C的方程;
(2)过点(m,0)作圆x2+y2=1的切线l交椭圆C于A,B两点,将|AB|表示为m的函数,并求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xOy中,圆C的参数方程为$\left\{{\begin{array}{l}{x=2+cosθ}\\{y=2+sinθ}\end{array}}\right.$(θ为参数),以坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为:sinθ-2cosθ=0,直线l与圆C相交于A,B两点,且|OA|<|OB|.
(1)求圆C的普通方程和直线l的直角坐标方程;
(2)求$\frac{{|{OA}|}}{{|{AB}|}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知过点(2,4)的直线l被圆C:x2+y2-2x-4y-5=0截得的弦长为6,则直线l的方程为x-2=0或3x-4y+10=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导数f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现作为条件,求若函数g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$+$\frac{1}{x-\frac{1}{2}}$,则g($\frac{1}{2017}$)+g($\frac{2}{2017}$)+g($\frac{3}{2017}$)+…+g($\frac{2016}{2017}$)=2016.

查看答案和解析>>

同步练习册答案