精英家教网 > 高中数学 > 题目详情
14.已知集合A≠∅,B={1,2,3,4,5,6,7},若x∈A,必有x∈B,且8-x∈A成立,则集合A最多有15个.

分析 x∈A,必有x∈B,且8-x∈A成立,可得A={1,7},{2,6},{3,5},{4},及其任取两个、三个、四个集合的并集.

解答 解:∵x∈A,必有x∈B,且8-x∈A成立,
∴A={1,7},{2,6},{3,5},{4},{1,7,2,6},{1,7,4},{1,7,3,5},{2,6,3,5},{2,6,4},{4,3,5},{1,7,2,6,4},{1,7,3,5,4},{1,7,2,6,4},{2,6,3,5,4},{1,2,3,4,5,6,7}.
因此集合A最多有:4+${∁}_{4}^{2}$+${∁}_{4}^{3}$+${∁}_{4}^{4}$=15个.
故答案为:15.

点评 本题考查了集合的运算性质、元素与集合之间的关系,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知数列{an}满足a1=1,a2=4,a3=9,an=an-1+an-2-an-3(n=4,5,…)则S2n=8n2-3n.(n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若两个等差数列{an},{bn}的前n项和分别为Sn,Tn对任意的n∈N*,都有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n-1}{4n-3}$,则$\frac{{a}_{4}}{{b}_{2}+{b}_{6}}$的值是(  )
A.$\frac{23}{50}$B.$\frac{25}{49}$C.$\frac{13}{50}$D.$\frac{13}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若$\overrightarrow{a}$与$\overrightarrow{b}$是共线向量,$\overrightarrow{b}$与$\overrightarrow{c}$是共线向量,则$\overrightarrow{a}$与$\overrightarrow{c}$的关系是③(填序号)①共线;②不共线;③以上二者皆可能.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(2x+1)的定义域是[-1,3],则函数f(1-x)的定义域是(  )
A.[-1,2]B.[-1,7]C.[-6,2]D.[0,8]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知sinα=$\frac{2\sqrt{5}}{5}$,求tan(α+π)+$\frac{sin(\frac{π}{2}+α)}{cos(\frac{π}{2}-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-1,x),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则x的值为(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知过点M(-3,-3)的直线l被圆x2+y2+4y-21=0所截得的弦长为8,则直线l的方程为4x+3y+21=0或x=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设△ABC的内角A,B,C所对的边分别是a,b,c,且(2b-$\sqrt{3}$c)cosA=$\sqrt{3}$acosC,则角A的大小为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案