精英家教网 > 高中数学 > 题目详情
4.已知数列{an}满足a1=1,a2=4,a3=9,an=an-1+an-2-an-3(n=4,5,…)则S2n=8n2-3n.(n∈N+

分析 由已知a1=1,a2=4,a3=9,an=an-1+an-2-an-3,得到an-an-1=an-2-an-3,分别分n为奇数和偶数得到通项公式,进一步等差数列求和即可.

解答 解:由已知a1=1,a2=4,a3=9,an=an-1+an-2-an-3,得到an-an-1=an-2-an-3
所以n为偶数时an-an-1=an-2-an-3=…=a2-a1=3,an=an-an-1+an-1-an-2+…+a2-a1+a1=$3×\frac{n}{2}+5×(\frac{n}{2}-1)$+1=4n-4,
n为奇数时an-an-1=an-2-an-3=…=a3-a2=5,an=an-an-1+an-1-an-2+…+a2-a1+a1=$3×\frac{n-1}{2}+5×\frac{n-1}{2}$+1=4n-3,
所以S2n=$4n+\frac{n(n-1)×8}{2}+n×1+\frac{n(n-1)×8}{2}$=8n2-3n
故答案为:8n2-3n.

点评 本题考查了数列求和,关键是从递推关系发现n为奇数和偶数时的通项公式,从而转化为等差数列求和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=x2+bx+c,满足f(-1)=f(5),则f(1),f(2),f(4)的大小关系为f(4)>f(1)>f(2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数sin($\frac{3π}{2}$-α)=-$\frac{12}{13}$且α∈(π,2π),则cosα等于(  )
A.$\frac{5}{13}$B.-$\frac{5}{13}$C.$\frac{12}{13}$D.-$\frac{12}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知集合A={x|$\frac{{x}^{2}-4}{\sqrt{x}}$=0},则集合A的子集的个数为2个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.△ABC的三内角A,B,C的对边分别为a,b,c,其中b=3,c=2.O为BC的中点,则$\overrightarrow{AO}$•$\overrightarrow{BC}$=(  )
A.$\frac{13}{2}$B.$\frac{5}{2}$C.-$\frac{5}{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{9}$,|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{5}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}中,a1=5,a2=2,an=2an-1+3an-2(n≥3).
(1)求证:数列{an+an-1}为等比数列
(2)求数列{n•an}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.将边长为a的正方形白铁皮,在它的四角各剪去一个小正方形(剪去的四个小正方形全等)然后弯折成一只无盖的盒子,问:剪去的小正方形边长为多少时,制成的盒子容积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知集合A≠∅,B={1,2,3,4,5,6,7},若x∈A,必有x∈B,且8-x∈A成立,则集合A最多有15个.

查看答案和解析>>

同步练习册答案