精英家教网 > 高中数学 > 题目详情
14.若函数f(x)=x2+bx+c,满足f(-1)=f(5),则f(1),f(2),f(4)的大小关系为f(4)>f(1)>f(2).

分析 由二次函数的图象和性质,得到对称轴,由自变量与对称轴的关系得到函数值的大小.

解答 解:∵f(-1)=f(5),
∴函数的对称轴是x=2,
∵函数f(x)=x2+bx+c时开口向上的抛物线,
∴f(4)>f(1)>f(2).

点评 本题考查由二次函数的图象和性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设集合P={x|x=$\frac{k}{3}$+$\frac{1}{6}$,k∈Z},Q={x|x=$\frac{k}{6}$+$\frac{1}{3}$,k∈Z},则(  )
A.P=QB.P?QC.P?QD.P∩Q=∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在复平面内,若复数z满足|z+1|=|1+iz|,则z在复平面内对应点的轨迹是(  )
A.直线B.C.椭圆D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.给出下列命题:
(1)命题“在△ABC中,若A=30°,则sinA=$\frac{1}{2}$”的逆否命题为“在△ABC中,若sinA≠$\frac{1}{2}$则A≠30°”
(2)若p∧q为假命题,则p,q均为假命题
(3)?x∈R,sin2x+cos2x=1的否定为真命题
(4)已知命题p:函数y=ax-1+2(a>0且a≠1)的图象恒过一定点A,则点A的坐标为(1,2),
其中正确命题的序号为(1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知x>y>0,且x+y≤2,则$\frac{4}{x+3y}$+$\frac{1}{x-y}$的最小值为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=x2-4x+1的图象与x轴交点的横坐标分别为x1,x2,则(  )
A.x1+x2=4B.x1x2=-2C.x1+x2=-4D.x1x2=2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.sin(-$\frac{2π}{3}$)=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.-$\frac{{\sqrt{3}}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知平面向量$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(9,x),$\overrightarrow{c}$=(4,y),且$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{a}$⊥$\overrightarrow{c}$
(1)求$\overrightarrow{b}$与$\overrightarrow{c}$
(2)若$\overrightarrow{m}$=2$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{n}$=$\overrightarrow{a}$+$\overrightarrow{c}$,求向量$\overrightarrow{m}$、$\overrightarrow{n}$的夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}满足a1=1,a2=4,a3=9,an=an-1+an-2-an-3(n=4,5,…)则S2n=8n2-3n.(n∈N+

查看答案和解析>>

同步练习册答案