精英家教网 > 高中数学 > 题目详情
3.已知平面向量$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(9,x),$\overrightarrow{c}$=(4,y),且$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{a}$⊥$\overrightarrow{c}$
(1)求$\overrightarrow{b}$与$\overrightarrow{c}$
(2)若$\overrightarrow{m}$=2$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{n}$=$\overrightarrow{a}$+$\overrightarrow{c}$,求向量$\overrightarrow{m}$、$\overrightarrow{n}$的夹角的大小.

分析 (1)由$\overrightarrow{a}$∥$\overrightarrow{b}$求出x的值,由$\overrightarrow{a}$⊥$\overrightarrow{c}$求出y的值,从而得出$\overrightarrow{b}$、$\overrightarrow{c}$;
(2)计算$\overrightarrow{m}$、$\overrightarrow{n}$,利用平面向量夹角的公式求出cos<$\overrightarrow{m}$,$\overrightarrow{n}$>,即得夹角的大小.

解答 解:(1)由$\overrightarrow{a}$∥$\overrightarrow{b}$得3x-4×9=0,解得x=12;
由$\overrightarrow{a}$⊥$\overrightarrow{c}$得9×4+xy=0,
解得y=-$\frac{36}{x}$=-$\frac{36}{12}$=-3;
所以$\overrightarrow{b}$=(9,12),$\overrightarrow{c}$=(4,-3);
(2)$\overrightarrow{m}$=2$\overrightarrow{a}$-$\overrightarrow{b}$=(-3,-4),
$\overrightarrow{n}$=$\overrightarrow{a}$+$\overrightarrow{c}$=(7,1);
所以$\overrightarrow{m}$•$\overrightarrow{n}$=-3×7-4×1=-25,
|$\overrightarrow{m}$|=$\sqrt{{(-3)}^{2}{+(-4)}^{2}}$=5,
|$\overrightarrow{n}$|=$\sqrt{{7}^{2}{+1}^{2}}$=5$\sqrt{2}$;
所以cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|×|\overrightarrow{n}|}$=$\frac{-25}{5×5\sqrt{2}}$=-$\frac{\sqrt{2}}{2}$,
所以向量$\overrightarrow{m}$、$\overrightarrow{n}$的夹角为$\frac{3π}{4}$.

点评 本题考查了数量积表示两个向量的夹角,平行向量与共线向量,数量积判断两个平面向量的垂直关系,其中根据“两个向量平行,坐标交叉相乘差为零,两个向量若垂直,对应相乘和为零”构造方程是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.对于函数f(x),如果存在锐角θ使得f(x)的图象绕坐标原点逆时针旋转角θ,所得曲线仍是一函数,则称函数f(x)具备角θ的旋转性,下列函数具有角$\frac{π}{4}$的旋转性的是(  )
A.$y=\sqrt{{x^2}-1}$B.y=x2C.y=2xD.y=lnx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=x2+bx+c,满足f(-1)=f(5),则f(1),f(2),f(4)的大小关系为f(4)>f(1)>f(2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“函数y=x3+3ax在x=1处的切线的斜率为6”是“直线x+y=0和直线x-ay=0互相垂直”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知实数a,b∈R,若a2-ab+b2=3,则$\frac{{{{(1+ab)}^2}}}{{{a^2}+{b^2}+1}}$的值域为$[0,\frac{16}{7}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$\overrightarrow a$=(-6,y),$\overrightarrow b$=(-2,1),且$\overrightarrow a$与$\overrightarrow b$共线,则y=(  )
A.-6B.6C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数sin($\frac{3π}{2}$-α)=-$\frac{12}{13}$且α∈(π,2π),则cosα等于(  )
A.$\frac{5}{13}$B.-$\frac{5}{13}$C.$\frac{12}{13}$D.-$\frac{12}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知集合A={x|$\frac{{x}^{2}-4}{\sqrt{x}}$=0},则集合A的子集的个数为2个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.将边长为a的正方形白铁皮,在它的四角各剪去一个小正方形(剪去的四个小正方形全等)然后弯折成一只无盖的盒子,问:剪去的小正方形边长为多少时,制成的盒子容积最大?

查看答案和解析>>

同步练习册答案