分析 a2-ab+b2=3,可得ab+3=a2+b2≥2|ab|,因此-1≤ab≤3,令ab=t∈[-1,3].$\frac{{{{(1+ab)}^2}}}{{{a^2}+{b^2}+1}}$=$\frac{(1+t)^{2}}{t+4}$=t-2+$\frac{9}{t+4}$=f(t).利用导数研究其单调性即可得出.
解答 解:∵a2-ab+b2=3,
∴ab+3=a2+b2≥2|ab|,∴-1≤ab≤3,当且仅当a=b=±$\sqrt{3}$时取右边等号,ab=-1时取左边等号.
令ab=t∈[-1,3].
则$\frac{{{{(1+ab)}^2}}}{{{a^2}+{b^2}+1}}$=$\frac{(1+t)^{2}}{t+4}$=t-2+$\frac{9}{t+4}$=f(t).
f′(t)=1-$\frac{9}{(t+4)^{2}}$=$\frac{{t}^{2}+8t+7}{(t+4)^{2}}$=$\frac{(t+1)(t+7)}{(t+4)^{2}}$
∴f(t)在[-1,3]上单调递增.
f(-1)=0,f(3)=$\frac{16}{7}$.
∴f(t)∈$[0,\frac{16}{7}]$.
故答案为:$[0,\frac{16}{7}]$.
点评 本题考查了基本不等式的性质、导数的应用,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | -$\frac{{\sqrt{3}}}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com